It is well known that the last stage of a turbine and the subsequent diffuser should be viewed at and designed as a coupled system rather than as single standalone components. The turbine outlet flow imposes the inlet conditions to the diffuser, whereas the recovered dynamic pressure in the diffuser directly controls the turbine back pressure. With changing operating point, the turbine outflow can vary significantly. This results consequently in large variations of the diffuser performance. A major role in the coupled system of turbine and diffuser can be attributed to the tip leakage flow. While it is desirable to minimize the tip leakage with regard to the turbine, a higher leakage mass flow can often be beneficial for the diffuser performance. As there is currently a trend toward aggressive and hence shorter diffusers which are particularly prone to separation, the question arises where the optimum for this tradeoff problem lies. To investigate the performance in the coupled turbine/diffuser system, a generic last stage with shrouded rotor and axial exhaust diffuser has been designed. The components are representative for heavy duty stationary gas turbine applications. Results are presented for three different operating points representing part-load (PL), design-load (DL), and over-load (OL) condition. Three different seal gap widths are taken into account to control the leakage flow. The results indicate that an operating point-dependent optimum gap width can be found for the coupled system efficiency, whereas the maximum turbine performance is always achieved with a minimum gap width.

References

1.
Vassiliev
,
V.
,
Irmisch
,
S.
,
Abdel-Wahab
,
S.
, and
Granovskiy
,
A.
,
2012
, “
Impact of the Inflow Conditions on the Heavy-Duty Gas Turbine Exhaust Diffuser Performance
,”
ASME J. Turbomach.
,
134
(
4
), p.
041018
.
2.
Hirschmann
,
A.
,
Volkmer
,
S.
,
Schatz
,
M.
,
Finzel
,
C.
,
Casey
,
M.
, and
Montgomery
,
M.
,
2012
, “
The Influence of the Total Pressure Profile on the Performance of Axial Gas Turbine Diffusers
,”
ASME J. Turbomach.
,
134
(
2
), p.
021017
.
3.
Fleige
,
H.
,
Riess
,
W.
, and
Seume
,
J.
,
2002
, “
Swirl and Tip Leakage Flow Interaction With Struts in Axial Diffusers
,”
ASME
Paper No. GT2002-30491.
4.
Volkmer
,
S.
,
Hirschmann
,
A.
,
Casey
,
M.
, and
Montgomery
,
M.
,
2011
, “
The Impact of a Tip Leakage Jet on Flow Separation in Axial Gas Turbine Diffusers
,”
Nineth Europe Conference on Turbomachinery, Fluid Dynamics and Thermodynamics
, Istanbul, Turkey, Mar. 21–25, pp. 649–661.
5.
Farokhi
,
S.
,
1987
, “
A Trade-Off Study of Rotor Tip Clearance Flow in a Turbine/Exhaust Diffuser System
,”
ASME
Paper No. 88-GT-229.
6.
Yoon
,
S.
,
2009
, “
Advanced Aerodynamic Design of the Intermediate Pressure Turbine for Aero-Engines
,” Ph.D. thesis, Cambridge University, Cambridge, UK.
7.
Zimmermann
,
C.
, and
Stetter
,
H.
,
1993
, “
Experimental Determination of the Flow Field in the Tip Region of a LP-Steam Turbine
,” ASME Paper No. 93-GT-106.
8.
Zimmermann
,
C.
, and
Stetter
,
H.
,
1992
, “
Einfluss der Radialspiele auf die Diffusorströmung und den Wirkungsgrad einer ND-Modellturbine
,” VGB Kraftwerkstechnik,
73
(8), pp. 690–695.
9.
Willinger
,
R.
, and
Haselbacher
,
H.
,
1998
, “
The Role of Rotor Tip Clearance on the Aerodynamic Interaction of a Last Gas Turbine Stage and an Exhaust Diffuser
,”
ASME
Paper No. 98-GT-94.
10.
Quest
,
L.
, and
Scholz
,
N.
,
1982
, “
Experimentelle Untersuchungen von Nabendiffusoren hinter Turbinen
,” Forschungsvereinigung Verbrennungskraftmaschinen e.V. (FVV), Frankfurt, Technical Report No. 302.
11.
Jansohn, P., ed.,
2013
,
Modern Gas Turbine Systems: High Efficiency, Low Emission, Fuel Flexible Power Generation
,
Woodhead Publishing
,
Oxford, UK
.
12.
Stieger
,
R. D.
,
2002
, “
The Effects of Wakes on Separating Boundary Layers in Low Pressure Turbines
,”
Ph.D. thesis
, Cambridge University, Cambridge, UK.https://www-diva.eng.cam.ac.uk/theses/the-effects-of-wakes-on-separating-boundary-layers-in-low-pressure-turbines
13.
Wilson
,
D. G.
,
1987
, “
New Guidelines for the Preliminary Design and Performance Prediction of Axial-Flow Turbines
,”
J. Inst. Mech. Eng.
,
201
(
4
), pp.
279
290
.
14.
Traupel
,
W.
,
2001
,
Thermische Turbomaschinen, Band 1: Thermodynamisch-strömungstechnische Berechnung
, 4th ed.,
Springer
, Berlin,
Germany
.
15.
Trutnovsky
,
K.
, and
Komotori
,
K.
,
1981
,
Berührungsfreie Dichtungen
, 4th ed.,
VDI-Verlag, Düsseldorf
,
Germany
.
16.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1967
, “
Experimentally Determined Optimum Geometries for Rectilinear Diffusers With Rectangular, Conical or Annular Cross-Section
,”
Fluid Mechanics of Internal Flow
,
G.
Sovran
, ed.,
Elsevier, Amsterdam, The Netherlands
, pp.
270
319
.
17.
Vassiliev
,
V.
,
Irmisch
,
S.
, and
Florjancic
,
S.
,
2002
, “
CFD Analysis of Industrial Gas Turbine Exhaust Diffusers
,”
ASME
Paper No. GT2002-30597.
18.
ANSYS
,
2016
, “
ANSYS CFX-Solver Theory Guide, Release 17.0
,” ANSYS Inc., Canonsburg, PA.
19.
Smith
,
S. F.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
J. R. Aeronaut. Soc.
,
69
(
655
), pp.
467
470
.
20.
Japikse
,
D.
,
1984
,
Turbomachinery Diffuser Design Technology
,
Concepts ETI Press
,
Norwich, VT
.
21.
Denton
,
J. D.
, and
Singh
,
U. K.
,
1979
,
Time Marching Methods for Turbomachinery Flow Calculation, Application of Numerical Methods to Flow Calculations in Turbomachines
, VKI Lecture Series 1979-7, Rhode-Saint-Genèse, Belgium.
22.
Kluß
,
D.
,
Stoff
,
H.
, and
Wiedermann
,
A.
,
2009
, “
Effect of Wakes and Secondary Flow on Re-Attachment of Turbine Exit Annular Diffuser Flow
,”
ASME J. Turbomach.
,
131
(
4
), p.
041012
.
23.
Stein
,
P.
,
Pfoster
,
C.
,
Sell
,
M.
,
Galpin
,
P.
, and
Hansen
,
T.
,
2016
, “
Computational Fluid Dynamics Modeling of Low Pressure Steam Turbine Radial Diffuser Flow by Using a Novel Multiple Mixing Plane Based Coupling—Simulation and Validation
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
041604
.
24.
Schäfer
,
P.
,
2016
, “
Verbesserung Des Verbesserung des Druckrückgewinns in axialen Kraftwerksdiffusoren
,” Ph.D. thesis, Ruhr-University Bochum, Bochum, Germany.
25.
Verein Deutscher Ingenieure VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC)
, (ed.,)
2006
,
VDI-Wärmeatlas
, 10th ed.,
Springer
, Berlin,
Germany
.
26.
Sutherland
,
D. M.
,
1893
, “
The Viscosity of Gases and Molecular Force
,”
Phil. Mag. Ser.
,
5
(
36
), pp.
507
530
.
27.
Eça
,
L.
, and
Hoekstra
,
M.
, 2004, “
A Verification Exercise for Two 2-D Steady Incompressible Turbulent Flows
,” European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, Apr. 2–9.
28.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
120
(
1
), pp.
120
129
.
29.
Casey
,
M. V.
,
2007
, “
Accounting for Losses and Definitions of Efficiency in Turbomachinery Stages
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
6
), pp.
735
743
.
30.
Yoon
,
S.
,
2013
, “
The Effect of the Degree of Reaction on the Leakage Loss in Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022602
.
31.
Rosic
,
B.
, and
Denton
,
J. D.
,
2008
, ” “
Control of Shroud Leakage Loss by Reducing Circumferential Mixing
,”
ASME J. Turbomach.
,
130
(
2
), p.
021010
.
32.
Yoon
,
S.
,
Curtis
,
E.
,
Denton
,
J.
, and
Longley
,
J.
,
2014
, “
The Effect of Clearance on Shrouded and Unshrouded Turbines at Two Levels of Reaction
,”
ASME J. Turbomach.
,
136
(
2
), p.
021013
.
33.
Anker
,
J. E.
,
Mayer
,
J. F.
, and
Casey
,
M. V.
,
2005
, ” “
The Impact of Rotor Labyrinth Seal Leakage Flow on the Loss Generation in an Axial Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
481
490
.
34.
Pfau
,
A.
,
Treiber
,
M.
,
Sell
,
M.
, and
Gyarmathy
,
G.
,
2001
, “
Flow Interaction From the Exit Cavity of an Axial Turbine Blade Row Labyrinth Seal
,”
ASME J. Turbomach.
,
123
(
2
), pp.
342
352
.
35.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
36.
Gier
,
J.
,
Stubert
,
B.
,
Brouillet
,
B.
, and
de Vito
,
L.
,
2005
, “
Interaction of Shroud Leakage Flow and Main Flow in a Three-Stage LP Turbine
,”
ASME J. Turbomach.
,
127
(
4
), pp.
649
658
.
37.
Prasad
,
A.
,
2005
, “
Calculation of the Mixed-Out State in Turbomachine Flows
,”
ASME J. Turbomach.
,
127
(
3
), pp.
564
572
.
38.
Brouwer
,
S.
,
2017
, “
Research on the Accuracy of Flow Simulation in Gas Turbine Exhaust Diffusers
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
39.
Volkmer
,
S.
,
Hirschmann
,
A.
,
Casey
,
M.
,
Mayer
,
J. F.
, and
Flitan
,
H.
,
2012
, “
Turbulence Modelling of the Flow in an Exhaust Gas Turbine Diffuser With Two-Equation Turbulence Models
,”
Nineth International ERCOFTAC Symposium on Engineering Turbulence Modeling and Measurements
, Thessaloniki, Greece, June 6–8.
40.
Vassiliev
,
V.
,
Irmisch
,
S.
, and
Claridge
,
M.
,
2003
, “
Experimental and Numerical Investigation of the Impact of Swirl on the Performance of Industrial Gas Turbines Exhaust Diffusers
,”
ASME
Paper No. GT2003-38424.
41.
Fric
,
T. F.
,
Villareal
,
R.
,
Auer
,
R. O.
,
James
,
M. L.
,
Ozgur
,
D.
, and
Staley
,
T. K.
,
1998
, ” “
Vortex Shedding From Struts in an Annular Exhaust Diffuser
,”
ASME J. Turbomach.
,
120
(
1
), pp.
186
192
.
You do not currently have access to this content.