Impact of the diverging cup angle of a swirling injector on the flow pattern and stabilization of technically premixed flames is investigated both theoretically and experimentally with the help of OH* chemiluminescence, OH laser-induced fluorescence and particle image velocimetry (PIV) measurements. Recirculation enhancement with a lower position of the internal recirculation zone (IRZ) and a flame leading edge protruding further upstream in the swirled flow are observed as the injector nozzle cup angle is increased. A theoretical analysis is carried out to examine whether this could be explained by changes of the swirl level as the diffuser cup angle is varied. It is shown that pressure effects need in this case to be taken into account in the swirl number definition and expressions for changes of the swirl level through a diffuser are derived. It is demonstrated that changes of the swirl level including or not the pressure contribution to the axial momentum flux are not at the origin of the changes observed of the flow and flame patterns in the experiments. The swirl number without the pressure term, designated as pressure-less swirl, is then determined experimentally with laser Doppler velocimetry (LDV) measurements at the injector outlet for a set of diffusers with increasing quarl angles under nonreacting conditions and the values found corroborate the predictions. It is finally shown that the decline of axial velocity and the rise of adverse axial pressure gradient, both due to the cross section area change through the diffuser cup, are the dominant effects that control the leading edge position of the IRZ of the swirled flow. This is used to develop a model for the displacement of the recirculation bubble as the quarl angle varies that shows very good agreement with experiments.

References

1.
Rawe
,
R.
, and
Kremer
,
H.
,
1981
, “
Stability Limits of Natural Gas Diffusion Flames With Swirl
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
667
677
.
2.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
3.
Beér
,
J. M.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
, Applied Science/Halsted-Wiley, London/New York.
4.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, Kent, UK
.
5.
Cheng
,
R.
,
Yegian
,
D.
,
Miyasato
,
M.
,
Samuelsen
,
G.
,
Benson
,
C.
,
Pellizzari
,
R.
, and
Loftus
,
P.
,
2000
, “
Scaling and Development of Low-Swirl Burners for Low-Emission Furnaces and Boilers
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
1305
1313
.
6.
Chterev
,
I.
,
Sundararajan
,
G.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2015
, “
Precession Effects on the Relationship Between Time-Averaged and Instantaneous Swirl Flow and Flame Characteristics
,”
ASME
Paper No. GT2015-42768.
7.
Burmberger
,
S.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Designing a Radial Swirler Vortex Breakdown Burner
,”
ASME
Paper No. GT2006-90497.
8.
Toh
,
K.
,
Honnery
,
D.
, and
Soria
,
J.
,
2010
, “
Axial plus Tangential Entry Swirling Jet
,”
Exp. Fluids
,
48
(
2
), pp.
309
325
.
9.
Fanaca
,
D.
,
Alemela
,
P.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2010
, “
Comparison of the Flow Field of a Swirl Stabilized Premixed Burner in an Annular and a Single Burner Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
071502
.
10.
Mongia
,
H.
,
2011
, “
Engineering Aspects of Complex Gas Turbine Combustion Mixers—Part III: 30 OPR
,”
AIAA
Paper No. 2011-5525.
11.
Chong
,
L. T. W.
,
Komarek
,
T.
,
Zellhuber
,
M.
,
Lenz
,
J.
,
Hirsch
,
C.
, and
Polifke
,
W.
,
2016
, “
Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization
,”
Flow, Turbulence and Combust.
,
97
, pp.
263
294
.
12.
Guiberti
,
T.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.
13.
Chigier
,
N. A.
, and
Beér
,
J. M.
,
1964
, “
Velocity and Static-Pressure Distributions in Swirling Air Jets Issuing From Annular and Divergent Nozzles
,”
J. Basic Eng.
,
86
(
4
), pp.
788
796
.
14.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2014
, “
Impact of Steam-Dilution on the Flame Shape and Coherent Structures in Swirl-Stabilized Combustors
,”
Combust. Sci. Technol.
,
186
(
7
), pp.
889
911
.
15.
Vanoverberghe
,
K. P.
,
Bulck
,
E. V. V. D.
, and
Tummers
,
M. J.
,
2003
, “
Confined Annular Swirling Jet Combustion
,”
Combust. Sci. Technol.
,
175
(
3
), pp.
545
578
.
16.
Therkelsen
,
P. L.
,
Littlejohn
,
D.
,
Cheng
,
R. K.
,
Portillo
,
J. E.
, and
Martin
,
S. M.
,
2010
, “
Effect of Combustor Inlet Geometry on Acoustic Signature and Flow Field Behavior of the Low Swirl Injector
,”
ASME
Paper No. GT2010-23498.
17.
Jourdaine
,
P.
,
Mirat
,
C.
,
Beaunier
,
J.
,
Caudal
,
J.
,
Joumani
,
Y.
, and
Schuller
,
T.
,
2016
, “
Effect of Quarl on N2- and CO2-Diluted Methane Oxy-Flames Stabilized by an Axial-plus-Tangential Swirler
,”
ASME
Paper No. GT2016-56953.
18.
Weber
,
R.
, and
Dugué
,
J.
,
1992
, “
Combustion Accelerated Swirling Flows in High Confinements
,”
Prog. Energy Combust. Sci.
,
18
(
4
), pp.
349
367
.
19.
Syred
,
N.
, and
Bekr
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
201
(
2
), pp.
143
201
.
20.
Mattingly
,
J. D.
,
Oates
,
G. C.
,
Dolling
,
D. S.
, and
Gray
,
W. K.
,
1986
, “
An Experimental Investigation of the Mixing of Coannular Swirling Flows
,”
AIAA J.
,
24
(
5
), pp.
785
792
.
21.
Mahmud
,
T.
,
Truelove
,
J. S.
, and
Wall
,
T. F.
,
1987
, “
Flow Characteristics of Swirling Coaxial Jets From Divergent Nozzles
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
275
282
.
22.
Jourdaine
,
P.
,
Mirat
,
C.
,
Caudal
,
J.
,
Lo
,
A.
, and
Schuller
,
T.
,
2017
, “
A Comparison Between the Stabilization of Premixed Swirling CO2-Diluted Methane Oxy-Flames and Methane/Air Flames
,”
Fuel
,
201
, pp.
156
164
.
23.
Jourdaine
,
P.
,
Mirat
,
C.
,
Caudal
,
J.
, and
Schuller
,
T.
,
2017
, “
Stabilization Mechanisms of Swirling Premixed Flames With an Axial-Plus-Tangential Swirler
,”
ASME J. Eng. Gas Turbines Power
140
(8), p.
081502
.
24.
Guiberti
,
T. F.
,
Durox
,
D.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2015
, “
Analysis of Topology Transitions of Swirl Flames Interacting With the Combustor Side Wall
,”
Combust. Flame
,
162
(
11
), pp.
4342
4357
.
25.
Lefebvre
,
A. H.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
, Boca Raton, FL.
26.
Jourdaine
,
P.
,
2017
, “
Analyse des mécanismes de stabilisation d'oxy-flammes prémélangées swirlées
,” Doctoral dissertation, CentraleSupélec, Université Paris Saclay, France.
27.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.
28.
Schlichting
,
H.
,
Gersten
,
K.
,
Krause
,
E.
, and
Oertel
,
H.
,
1955
,
Boundary-Layer Theory
, Vol.
7
,
Springer
, Berlin.
You do not currently have access to this content.