This paper presents volumetric velocimetry (VV) measurements for a jet in crossflow that is representative of film cooling. VV employs particle tracking to nonintrusively extract all three components of velocity in a three-dimensional volume. This is its first use in a film-cooling context. The primary research objective was to develop this novel measurement technique for turbomachinery applications, while collecting a high-quality data set that can improve the understanding of the flow structure of the cooling jet. A new facility was designed and manufactured for this study with emphasis on optical access and controlled boundary conditions. For a range of momentum flux ratios from 0.65 to 6.5, the measurements clearly show the penetration of the cooling jet into the freestream, the formation of kidney-shaped vortices, and entrainment of main flow into the jet. The results are compared to published studies using different experimental techniques, with good agreement. Further quantitative analysis of the location of the kidney vortices demonstrates their lift off from the wall and increasing lateral separation with increasing momentum flux ratio. The lateral divergence correlates very well with the self-induced velocity created by the wall–vortex interaction. Circulation measurements quantify the initial roll up and decay of the kidney vortices and show that the point of maximum circulation moves downstream with increasing momentum flux ratio. The potential for nonintrusive VV measurements in turbomachinery flow has been clearly demonstrated.

References

1.
Fric
,
T.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
2.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.
3.
Bogard
,
D.
, and
Thole
,
K.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
4.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
5.
Wilfert
,
G.
, and
Fottner
,
L.
,
1994
, “
The Aerodynamic Mixing Effect of Discrete Cooling Jets With Mainstream Flow on a Highly Loaded Turbine Blade
,”
ASME
Paper No. 94-GT-235.
6.
Peña
,
F. L.
, and
Arts
,
T.
,
1993
, “
On the Development of a Film Cooling Layer
,”
Heat Transfer and Cooling in Gas Turbines
,
AGARD
, Neuilly sur Seine, France.
7.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
8.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection
,”
ASME J. Turbomach.
,
119
(
2
), pp.
352
358
.
9.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
1997
, “
A Detailed Analysis of Film-Cooling Physics—Part I: Streamwise Injection With Cylindrical Holes
,”
ASME
Paper No. 97-GT-269.
10.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part II: Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.
11.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
1997
, “
A Detailed Analysis of Film Cooling Physics—Part III: Streamwise Injection With Shaped Holes
,”
ASME
Paper No. 97-GT-271.
12.
Woisetschläger
,
J.
, and
Göttlich
,
E.
,
2007
, “
Recent Applications of Particle Image Velocimetry to Flow Research in Thermal Turbomachinery
,”
Particle Image Velocimetry
,
Springer
, Berlin, Germany, pp.
311
331
.
13.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
,
2005
, “
Modeling of Film Cooling-Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
,
128
(
1
), pp.
141
149
.
14.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2013
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
.
15.
Laveau
,
B.
, and
Abhari
,
R. S.
,
2010
, “
Influence of Flow Structure on Shaped Hole Film Cooling Performance
,”
ASME
Paper No. GT2010-23032.
16.
Wright
,
L. M.
,
McClain
,
S. T.
,
Brown
,
C. P.
, and
Harmon
,
W. V.
,
2013
, “
Assessment of a Double Hole Film Cooling Geometry Using S-PIV and PSP
,”
ASME
Paper No. GT2013-94614.
17.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
.
18.
Cleaver
,
D.
,
Wang
,
Z.
, and
Gursul
,
I.
,
2013
, “
Oscillating Flexible Wings at Low Reynolds Numbers
,”
AIAA
Paper 2013-0674.
19.
Calderon
,
D. E.
,
Wang
,
Z.
,
Gursul
,
I.
, and
Visbal
,
M. R.
,
2013
, “
Volumetric Measurements and Simulations of the Vortex Structures Generated by Low Aspect Ratio Plunging Wings
,”
Physics of Fluids
,
25
(6), p. 067102.
20.
Boushaki
,
T.
,
Koched
,
A.
,
Mansouri
,
Z.
, and
Lespinasse
,
F.
,
2017
, “
Volumetric Velocity Measurements (V3V) on Turbulent Swirling Flows
,”
Flow Meas. Instrum.
,
54
, pp.
46
55
.
21.
Stellmacher
,
M.
, and
Obermayer
,
K.
,
2000
, “
A New Particle Tracking Algorithm Based on Deterministic Annealing and Alternative Distance Measures
,”
Exp. Fluids
,
28
(
6
), pp.
506
518
.
22.
Bernsdorf
,
S.
,
2005
, “
Experimental Investigation of Film Cooling Flow Structure
,” Doktor der Wissenschaften, Eidgenossischen Technischen Hochschule Zurich, Zurich, Switzerland.
23.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
, Springer Handbook of Experimental Fluid Mechanics,
Springer Science & Business Media
, Springer, Berlin.
24.
Moffat
,
R.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
25.
Moffat
,
R.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
.
26.
Moffat
,
R.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
27.
Ito
,
H.
,
Watanabe
,
Y.
, and
Shoji
,
Y.
,
1985
, “
A Long-Radius Inlet Nozzle for Flow Measurement
,”
J. Phys. E
,
18
(
1
), p.
88
.
28.
Mehta
,
R. D.
, and
Bell
,
J. H.
,
1989
, “
Boundary-Layer Predictions for Small Low-Speed Contractions
,”
AIAA J.
,
27
(
3
), pp.
372
374
.
29.
Mehta
,
R. D.
, and
Bradshaw
,
P.
,
1979
, “
Design Rules for Small Low Speed Wind Tunnels
,”
Aeronaut. J.
,
83
(
827
), pp.
443
453
.
30.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), p.
1422
.
31.
Morgan
,
C.
,
Babinsky
,
H.
, and
Harvey
,
J.
,
2009
, “
Vortex Detection Methods for Use With PIV and CFD Data
,”
AIAA
Paper No. AIAA 2009-74.
32.
Karagozian
,
A.
,
1986
, “
An Analytical Model for the Vorticity Associated With a Transverse Jet
,”
AIAA J.
,
24
(
3
), pp.
429
436
.
33.
Zang
,
B.
, and
New
,
T. H.
,
2017
, “
Near-Field Dynamics of Parallel Twin Jets in Cross-Flow
,”
Phys. Fluids
,
29
(
3
), p.
035103
.
34.
Pedersen
,
N.
,
Larsen
,
P. S.
, and
Jacobsen
,
C. B.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part I: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
61
72
.
35.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
36.
Prasad
,
A.
, and
Adrian
,
R.
,
1993
, “
Stereoscopic Particle Image Velocimetry Applied to Liquid Flows
,”
Exp. Fluids
,
15
(
1
), pp.
49
60
.
You do not currently have access to this content.