The wind industry needs reliable and accurate airfoil polars to properly predict wind turbine performance, especially during the initial design phase. Medium- and low-fidelity simulations directly depend on the accuracy of the airfoil data and even more so if, e.g., dynamic effects are modeled. This becomes crucial if the blades of a turbine operate under stalled conditions for a significant part of the turbine's lifetime. In addition, the design process of vertical axis wind turbines needs data across the full range of angles of attack between 0 and 180 deg. Lift, drag, and surface pressure distributions of a NACA 0021 airfoil equipped with surface pressure taps were investigated based on time-resolved pressure measurements. The present study discusses full range static polars and several dynamic sinusoidal pitching configurations covering two Reynolds numbers Re = 140k and 180k, and different incidence ranges: near stall, poststall, and deep stall. Various bistable flow phenomena are discussed based on high frequency measurements revealing large lift-fluctuations in the post and deep stall regime that exceed the maximum lift of the static polars and are not captured by averaged measurements. Detailed surface pressure distributions are discussed to provide further insight into the flow conditions and pressure development during dynamic motion. The experimental data provided within the present paper are dedicated to the scientific community for calibration and reference purposes, which in the future may lead to higher accuracy in performance predictions during the design process of wind turbines.
Skip Nav Destination
Article navigation
March 2019
Research-Article
Experimental Analysis of a NACA 0021 Airfoil Under Dynamic Angle of Attack Variation and Low Reynolds Numbers
D. Holst,
D. Holst
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: David.Holst@TU-Berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: David.Holst@TU-Berlin.de
Search for other works by this author on:
B. Church,
B. Church
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Search for other works by this author on:
F. Wegner,
F. Wegner
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Search for other works by this author on:
G. Pechlivanoglou,
G. Pechlivanoglou
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Search for other works by this author on:
C. N. Nayeri,
C. N. Nayeri
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Search for other works by this author on:
C. O. Paschereit
C. O. Paschereit
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Search for other works by this author on:
D. Holst
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: David.Holst@TU-Berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: David.Holst@TU-Berlin.de
B. Church
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
F. Wegner
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
G. Pechlivanoglou
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
C. N. Nayeri
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
C. O. Paschereit
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
1Corresponding author.
Manuscript received July 3, 2018; final manuscript received July 20, 2018; published online October 17, 2018. Editor: Jerzy T. Sawicki.
J. Eng. Gas Turbines Power. Mar 2019, 141(3): 031020 (10 pages)
Published Online: October 17, 2018
Article history
Received:
July 3, 2018
Revised:
July 20, 2018
Citation
Holst, D., Church, B., Wegner, F., Pechlivanoglou, G., Nayeri, C. N., and Paschereit, C. O. (October 17, 2018). "Experimental Analysis of a NACA 0021 Airfoil Under Dynamic Angle of Attack Variation and Low Reynolds Numbers." ASME. J. Eng. Gas Turbines Power. March 2019; 141(3): 031020. https://doi.org/10.1115/1.4041146
Download citation file:
Get Email Alerts
Experimental Characterization of Superheated Ammonia Spray from a Single-hole ECN Spray M Injector
J. Eng. Gas Turbines Power
Data-Driven Approach for Predicting Vibration Response of Bladed Disks With Geometric Mistuning
J. Eng. Gas Turbines Power (October 2025)
Experimental Investigation of Particulate Emissions From an Ammonia-Fueled Internal Combustion Engine
J. Eng. Gas Turbines Power (October 2025)
High-Temperature Industrial-Scale CO2 Heat Pumps: Thermodynamic Analysis and Pilot-Scale Testing
J. Eng. Gas Turbines Power (October 2025)
Related Articles
Experimental Analysis of a NACA 0021 Airfoil Section Through 180-Deg Angle of Attack at Low Reynolds Numbers for Use in Wind Turbine Analysis
J. Eng. Gas Turbines Power (April,2019)
Active Flow Control of Dynamic Stall by Means of Continuous Jet Flow at Reynolds Number of 1 × 10 6
J. Fluids Eng (January,2018)
Effect of Gurney Flaps on an Elliptical Airfoil
J. Fluids Eng (October,2017)
A Correlation-Based Transition Model Using Local Variables—Part II:
Test Cases and Industrial Applications
J. Turbomach (January,0001)
Related Proceedings Papers
Related Chapters
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Numerical Investigation of Reynolds Number Effect on Airfoil Aerodynamic Performances
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)