The supercritical CO2 (sCO2) Brayton cycle has been attracting much attention to produce the electricity power, chiefly due to its higher thermal efficiency with the relatively lower temperature at the turbine inlet compared to other common energy conversion cycles. Centrifugal compressor operating conditions in the supercritical Brayton cycle are commonly set in vicinity of the critical point, owing to smaller compressibility factor and eventually lower compressor work. This paper investigates and compares different centrifugal compressor design methodologies in close proximity to the critical point and suggests the most accurate design procedure based on the findings. An in-house mean-line design code, which is based on the individual enthalpy loss models, is compared to stage efficiency correlation design methods. Moreover, modifications are introduced to the skin friction loss calculation to establish an accurate one-dimensional design methodology. Moreover, compressor performance is compared to the experimental measurements.

References

1.
Dostal
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Massachusetts Institute of Technology
, Cambridge, MA.
2.
Angelino
,
G.
, and
Invernizzi
,
C.
,
2001
, “
Real Gas Brayton Cycles for Organic Working Fluids
,”
Proc. Inst. Mech. Eng. Part A
,
215
(
1
), pp.
27
38
.
3.
Balje, O. E., and Japikse, D., 1981, “
Turbomachines—A Guide to Design Selection and Theory
,”
J. Fluids Eng.
,
103
(4), p. 644.
4.
Lee
,
J.
,
Lee
,
J. I.
,
Yoon
,
H. J.
, and
Cha
,
J. E.
,
2014
, “
Supercritical Carbon Dioxide Turbomachinery Design for Water-Cooled Small Modular Reactor Application
,”
Nucl. Eng. Des.
,
270
, pp.
76
89
.
5.
Conrad
,
O.
,
Raif
,
K.
, and
Wessels
,
M.
, “
1979
, “
The Calculation of Performance Maps for Centrifugal Compressors With Vane-Island Diffusers
,”
Performance Prediction of Centrifugal Pumps and Compressors: Proceedings of the Twenty-fifth Annual International Gas Turbine Conference and Exhibit and Twenty-second Annual Fluids Engineering Conference, New Orleans, LA, Mar. 9–13
, pp.
135
147
.
6.
Coppage
,
J. E.
, and
Dallenbach
,
F.
,
1956
, “
Study of Supersonic Radial Compressors for Refrigeration and Pressurization Systems
,” Report No.
AD0110467
http://contrails.iit.edu/reports/3689.
7.
Jansen
,
W.
,
1967
, “
A Method for Calculating the Flow in a Centrifugal Impeller When Entropy Gradients Are Present
,”
Royal Society Conference on Internal Aerodynamics (Turbomachinery)
, pp.
133
146
.
8.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors, A Strategy for Aerodynamic Design and Analysis
,
ASME Press
, New York.
9.
Rodgers
,
C.
,
1997
, “
Development of a High-Specific- Speed Centrifugal Compressor
,”
ASME J. Turbomach.
,
119
(
3
), pp.
501
505
.
10.
Oh
,
H.-W.
,
Yoon
,
E. S.
, and
Chung
,
M. K.
,
1997
, “
An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors
,”
Proc. Inst. Mech. Eng. Part A
,
211
(
4
), pp.
331
338
.
11.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2010-0171
.
12.
Ameli
,
A.
,
2017
, “
AlFaCCD
,” Columbus, Georgia, acccessed July 06, 2018, http://alirezaew67.wixsite.com/aameli/alfa-ccd-tool
13.
PCA Engineers Ltd
,
2016
, “
Vista CCD
,” PCA Engineers Ltd, Lincoln, UK.
14.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1
,” National Institute of Standards and Technology, Gaithersburg, MD.
15.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
16.
Kim
,
S. G.
,
Lee
,
J.
,
Ahn
,
Y.
,
Lee
,
J. I.
,
Addad
,
Y.
, and
Ko
,
B.
,
2014
, “
CFD Investigation of a Centrifugal Compressor Derived From Pump Technology for Supercritical Carbon Dioxide as a Working Fluid
,”
J. Supercrit. Fluids
,
86
, pp.
160
171
.
17.
Lettieri
,
C.
,
Baltadjiev
,
N.
,
Casey
,
M.
, and
Spakovszky
,
Z.
,
2014
, “
Low-Flow-Coefficient Centrifugal Compressor Design for Supercritical CO2
,”
ASME J. Turbomach.
,
136
(
8
), p.
081008
.
18.
Baltadjiev, N. D., Lettieri, D., and Spakovszky, S. Z., 2012, “
An Investigation of Real Gas Effects in Supercritical CO2 Compressors
,”
ASME J. Turbomach.
,
137
(9), p. 091003
19.
Ameli
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2016
, “
Numerical Investigation of the Flow Behavior Inside a Supercritical CO2 Centrifugal Compressor
,”
ASME
Paper No. GT2016-57481.
20.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
,
McGraw-Hill
, New York.
21.
Johnston, J. P., and Dean, R. C., 1966 “
Losses in Vaneless Diffusers of Centrifugal Compressors and Pumps, Analysis, Experiment, and Design
,”
ASME J. Eng. Power
,
88
(1), pp. 49–60.
22.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.
23.
Zhu
,
Y.
, and
Sjolander
,
S. A.
,
1987
, “
Effect of Geometry on the Performance of Radial Vaneless Diffusers
,”
ASME J. Turbomach.
,
109
(
4
), pp.
550
556
.
24.
Wright
,
S. A.
,
Conboy
,
T. M.
, and
Rochau
,
G. E.
,
2011
, “
Overview of Supercritical CO2 Power Cycle Development at Sandia National Laboratories
,”
University Turbine Systems Research Workshop
, Columbus, OH, Oct. 25–27, pp.
1
30
.
25.
ANSYS
,
2017
, “
BladeGen
,” ANSYS, Canonsburg, PA.
26.
ANSYS
,
2017
, “
Turbo Grid
,” ANSYS, Canonsburg, PA.
27.
Ameli
,
A.
,
Afzalifar
,
A.
,
Turunen-saaresti
,
T.
, and
Backman
,
J.
,
2017
, “
Effects of Real Gas Model Accuracy and Operating Conditions on Supercritical CO2 Compressor Performance and Flow Field
,”
ASME
Paper No. GT2017-63570.
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
29.
ANSYS
,
2017
, “
ANSYS CFX-Pre 18.0
,” ANSYS, Canonsburg, PA.
30.
Tiainen
,
J.
,
Jaatinen-Värri
,
A.
,
Grönman
,
A.
, and
Backman
,
J.
,
2017
, “
Effect of Free-Stream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors
,”
ASME
Paper No. GT2017-63268.
31.
Conboy, T., Wright, S., Pasch, J., Fleming, D., Rochau, G., and Fuller, R., 2012, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(11), p. 111703.
32.
Casey, M. V., and Robinson, C. J., 2006, “
A Guide to Turbocharger Compressor Characteristics, in Dieselmotorentechnik
,” 10th Symposium, TAE Esslingen, Mar. 30–31.
33.
Casey
,
M. V.
, and
Marty
,
F.
,
1986
, “
Centrifugal Compressors-Performance at Design and Off-Design
,” Inst. Refrig. Inst. Mar. Eng., London.
34.
Rodgers
,
C.
,
1964
, “
Typical Performance Characteristics of Gas Turbine Radial Compressors
,”
J. Eng. Power
,
86
(
2
), pp.
161
170
.
35.
Robinson
,
C.
,
Casey
,
M.
, and
Woods
,
I.
,
2011
, “
An Integrated Approach to the Aer-Mechanical Optimization of Turbo Compressors
,” Current Trends in Design and Computation of Turbomachinery,
33
(3), p. 031026.
You do not currently have access to this content.