Recently, a fractal-based algebraic flame surface density (FSD) premixed combustion model has been derived and validated in the context of large eddy simulation (LES). The fractal parameters in the model, namely the cut-off scales and the fractal dimension were derived using theoretical models, experimental and direct numerical simulation (DNS) databases. The model showed good performance in predicting the premixed turbulent flame propagation for low to high Reynold numbers (Re) in ambient as well as elevated pressure conditions. Several LES combustion models have a direct counterpart in the Reynolds-averaged Navier–Stokes (RANS) context. In this work, a RANS version of the aforementioned LES subgrid scale FSD combustion model is developed. The performance of the RANS model is compared with that of the original LES model and validated with the experimental data. It is found that the RANS version of the model shows similarly good agreement with the experimental data.

References

1.
Cant
,
S.
,
2011
, “
RANS and LES Modelling of Premixed Turbulent Combustion
,”
Turbulent Combustion Modelling, Fluid Mechanics and Its Applications
,
T.
Echekki
, and
E
.
Mastorakos
, eds., Vol.
95
,
Springer
,
Dordrecht, The Netherlands
, pp.
63
90
.
2.
Lipatnikov
,
A.
, and
Chomiak
,
J.
,
2002
, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
1
74
.
3.
Veynante
,
D.
, and
Vervisch
,
L.
,
2002
, “
Turbulent Combustion Modelling
,”
Prog. Energy Combust. Sci.
,
28
(
3
), pp.
193
266
.
4.
Bray
,
K. N. C.
,
Champion
,
M.
, and
Libby
,
P.
,
2001
, “
Premixed Flames in Stagnating Turbulence: Part V Evaluation of Models for the Chemical Source Term
,”
Combust. Flame
,
127
(
1–2
), pp.
2023
2040
.
5.
Chakraborty
,
N.
, and
Klein
,
M.
,
2008
, “
A-Priori Direct Numerical Simulation Assessment of Algebraic Flame Surface Density Models for Turbulent Premixed Flames in the Context of Large Eddy Simulation
,”
Phys. Fluids
,
20
(
8
), pp.
85
108
.
6.
Ma
,
T.
,
Stein
,
O. T.
,
Chakraborty
,
N.
, and
Kempf
,
A. M.
,
2013
, “
A Posteriori Testing of Algebraic Flame Surface Density Models for LES
,”
Combust. Theory Modell.
,
17
(
3
), pp.
431
482
.
7.
Keppeler
,
K.
,
Tangermann
,
E.
,
Allauddin
,
U.
, and
Pfitzner
,
M.
,
2014
, “
LES of Low to High Turbulent Combustion in an Elevated Pressure Environment
,”
Flow, Turbul. Combust.
,
92
(
3
), pp.
767
802
.
8.
Allauddin
,
U.
,
Keppeler
,
R.
, and
Pfitzner
,
M.
,
2014
, “
Turbulent Premixed LES Combustion Models Based on Fractal Flame Surface Density Concept
,”
ASME
Paper No. GT2014-25919
.
9.
Allauddin
,
U.
,
Klein
,
M.
,
Pfitzner
,
M.
, and
Chakraborty
,
N.
,
2016
, “
A Priori and a Posteriori Analysis of Algebraic Flame Surface Density Modelling in the Context of Large Eddy Simulation of Turbulent Premixed Combustion
,”
Numer. Heat Transfer Part A
,
71
(
2
), pp.
153
171
.
10.
Allauddin
,
U.
,
2017
, “
Modelling of Turbulent Premixed Combustion Using LES and RANS Methods
,” Ph.D. thesis, University of Bundeswehr, Munich, Germany.
11.
Muppala
,
S. P. R.
,
Aluri
,
N. K.
,
Dinkelacker
,
F.
, and
Leipertz
,
A.
,
2005
, “
Development of an Algebraic Reaction Rate Closure for the Numerical Calculation of Turbulent Premixed Methane, Ethylene, and Propane/Air Flames for Pressures Up to 1.0 MPa
,”
Combust. Flame
,
140
(
4
), pp.
257
266
.
12.
Aluri
,
N.
,
Muppala
,
S. P. R.
, and
Dinkelacker
,
F.
,
2008
, “
Large Eddy Simulation of Lean Premixed Turbulent Flames of Three Different Combustion Configurations Using a Novel Reaction Closure
,”
Flow Turbul. Combust.
,
80
(
2
), pp.
207
224
.
13.
Dinkelacker
,
F.
,
Manickam
,
B.
, and
Muppala
,
S. P. R.
,
2011
, “
Modelling and Simulation of Lean Premixed Turbulent Methane/Hydrogen/Air Flames With an Effective Lewis Number Approach
,”
Combust. Flame
,
158
(
9
), pp.
1742
1749
.
14.
Chakraborty
,
N.
, and
Cant
,
R. S.
,
2011
, “
Effects of Lewis Number on Flame Surface Density Transport in Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(
9
), pp.
1768
1787
.
15.
Klein
,
M.
,
Chakraborty
,
N.
, and
Pfitzner
,
M.
,
2016
, “
Analysis of the Combined Modelling of Sub-Grid Transport and Filtered Flame Propagation for Premixed Turbulent Combustion
,”
Flow, Turbul. Combust.
,
96
(
4
), pp.
921
938
.
16.
Lindstedt
,
R.
, and
Váos
,
E.
,
1999
, “
Modelling of Premixed Turbulent Flames With Second Moment Methods
,”
Combust. Flame
,
116
(
4
), pp.
461
485
.
17.
Gouldin
,
F.
,
1987
, “
An Application of Fractals to Modelling Premixed Turbulent Flames
,”
Combust. Flame
,
68
(
3
), pp.
249
266
.
18.
Brandl
,
A.
,
Pfitzner
,
M.
,
Mooney
,
J.
,
Durst
,
B.
, and
Kern
,
W.
,
2005
, “
Comparison of Combustion Models and Assessment of Their Applicability to the Simulation of Premixed Turbulent Combustion in SI-Engines
,”
Flow, Turbul. Combust.
,
75
(
1–4
), pp.
335
350
.
19.
Tangermann
,
E.
,
Keppeler
,
R.
, and
Pfitzner
,
M.
,
2010
, “
Premixed Turbulent Combustion Model for Large Eddy and RANS Simulations
,”
ASME
Paper No. GT2010-22298
.
20.
Aluri
,
N. K.
,
Pantangi
,
P. K. G.
,
Muppala
,
S. P. R.
, and
Dinkelacker
,
F.
,
2005
, “
Numerical Study Promoting Algebraic Models for the Lewis Number Effect in Atmospheric Turbulent Premixed Bunsen Flames
,”
Flow, Turbul. Combust.
,
75
(
1–4
), pp.
149
172
.
21.
Aluri
,
N. K.
,
Muppala
,
S. P. R.
, and
Dinkelacker
,
F.
,
2006
, “
Substantiating a Fractal-Based Algebraic Reaction Closure of Turbulent Premixed Combustion for High-Pressure and Lewis Number Effects
,”
Combust. Flame
,
145
(
4
), pp.
663
674
.
22.
Zimont
,
V.
, and
Lipatnikov
,
A.
,
1995
, “
A Numerical Model of Premixed Turbulent Combustion of Gases
,”
Chem. Phys. Rep.
,
14
(
7
), pp.
993
1025
.https://www.researchgate.net/publication/312978033_A_numerical_model_of_premixed_turbulent_combustion_of_gases
23.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed.,
Edwards
, Philadelphia PA.
24.
Richard
,
S.
,
Colina
,
O.
,
Vermorel
,
O.
,
Benkenid
,
A.
,
Angelberger
,
C.
, and
Veynante
,
D.
,
2007
, “
Towards Large Eddy Simulation of Combustion in Spark Ignition Engines
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3059
3066
.
25.
Fiorina
,
B.
,
Vicquelin
,
R.
,
Auzillon
,
P.
,
Darabiha
,
N.
,
Gicquel
,
O.
, and
Veynante
,
D.
,
2010
, “
A Filtered Tabulated Chemistry Model for LES of Premixed Combustion
,”
Combust. Flame
,
157
(
3
), pp.
465
475
.
26.
Driscoll
,
J. F.
,
2008
, “
Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
91
134
.
27.
Kobayashi
,
H.
, and
Kawazoe
,
H.
,
2000
, “
Flame Instability Effects on the Smallest Wrinkling Scale and Burning Velocity of High-Pressure Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
375
382
.
28.
Clavin
,
P.
,
1985
, “
Dynamic Behaviour of Premixed Flame Fronts in Laminar and Turbulent Flows
,”
Prog. Energy Combust. Sci.
,
11
(
1
), pp.
1
59
.
29.
Voigt
,
T.
,
2013
, “
Numerische Simulation aerodynamisch getriebener Flammenflächen
,” Ph.D. thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany.
30.
Menter
,
F. R.
,
1992
, “
Performance of Popular Turbulence Models for Attached and Separated Adverse Pressure Gradient Flow
,”
AIAA J.
,
30
(
8
), pp.
2066
2072
.
31.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation k−ω Turbulence Models for Aerodynamics Flows
,” National Aeronautics and Space Administration Ames, Moffett Field, CA, Report No.
TM-103975
.https://ntrs.nasa.gov/search.jsp?R=19930013620
32.
Kobayashi
,
H.
,
Nakashima
,
T.
,
Tamura
,
T.
,
Maruta
,
K.
, and
Niioka
,
T.
,
1997
, “
Turbulence Measurements and Observations of Turbulent Premixed Flames at Elevated Pressures Up to 3.0 MPa
,”
Combust. Flame
,
108
(
1–2
), pp.
104
117
.
33.
Kobayashi
,
H.
,
Tamura
,
T.
,
Maruta
,
K.
,
Niioka
,
T.
, and
Williams
,
F. A.
,
1996
, “
Burning Velocity of Turbulent Premixed Flames in a High-Pressure Environment
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
389
396
.
34.
Kobayashi
,
H.
,
Kawabata
,
Y.
, and
Maruta
,
K.
,
1998
, “
Experimental Study on General Correlation of Turbulent Burning Velocity at High Pressure
,”
Sym. (Int.) Combust
,
27
(
1
), pp.
941
948
.
35.
Bray
,
K. N. C.
, and
Moss
,
J. B.
,
1977
, “
A Unified Statistical Model of the Premixed Turbulent Flame
,”
Acta Astronaut.
,
4
(
3–4
), pp.
291
319
.
You do not currently have access to this content.