Abstract

This study provides a novel contribution toward the establishment of a new high-fidelity simulation-based design methodology for stall-regulated horizontal axis wind turbines. The aerodynamic design of these machines is complex, due to the difficulty of reliably predicting stall onset and poststall characteristics. Low-fidelity design methods, widely used in industry, are computationally efficient, but are often affected by significant uncertainty. Conversely, Navier–Stokes computational fluid dynamics (CFD) can reduce such uncertainty, resulting in lower development costs by reducing the need of field testing of designs not fit for purpose. Here, the compressible CFD research code COSA is used to assess the performance of two alternative designs of a 13-m stall-regulated rotor over a wide range of operating conditions. Validation of the numerical methodology is based on thorough comparisons of novel simulations and measured data of the National Renewable Energy Laboratory (NREL) phase VI turbine rotor, and one of the two industrial rotor designs. An excellent agreement is found in all cases. All simulations of the two industrial rotors are time-dependent, to capture the unsteadiness associated with stall which occurs at most wind speeds. The two designs are cross-compared, with emphasis on the different stall patterns resulting from particular design choices. The key novelty of this work is the CFD-based assessment of the correlation among turbine power, blade aerodynamics, and blade design variables (airfoil geometry, blade planform, and twist) over most operational wind speeds.

References

1.
Forsyth
,
T.
,
Burch
,
J.
,
Boshell
,
F.
, and
Baranowski
,
R.
,
2015
, “
Quality Infrastructure for Renewable Energy Technologies Small Wind Turbines
,” International Renewable Energy Agency, Abu Dhabi, United Arab Emirates.
2.
Bortolini
,
B.
,
Gamberi
,
M.
,
Graziani
,
A.
,
Manzini
,
R.
, and
Pilati
,
F.
,
2014
, “
Performance and Viability Analysis of Small Wind Turbines in the European Union
,”
Renewable Energy
,
62
, pp.
629
639
.10.1016/j.renene.2013.08.004
3.
Jain
,
P.
,
2011
,
Wind Energy Engineering
,
McGraw-Hill
,
New York
.
4.
Sørensen
,
N.
,
Michelsen
,
J.
, and
Schreck
,
S.
,
2002
, “
Navier–Stokes Predictions of the NREL Phase VI Rotor in the NASA Ames 80 ft × 120 ft Wind Tunnel
,”
Wind Energy
,
5
(
2–3
), pp.
151
169
.
5.
Potsdam
,
M.
, and
Mavriplis
,
D.
,
2009
, “
Unstructured Mesh CFD Aerodynamic Analysis of the NREL Phase VI Rotor
,”
AIAA
Paper No. 2009-1221.10.2514/6.2009-1221
6.
Bechmann
,
A.
,
Sorensen
,
N.
, and
Zahle
,
F.
,
2011
, “
CFD Simulations of the Mexico Rotor
,”
Wind Energy
,
14
(
5
), pp.
677
689
.10.1002/we.450
7.
Mo
,
J.-O.
,
Choudhry
,
A.
,
Arjomandi
,
M.
, and
Lee
,
Y.-H.
,
2013
, “
Large Eddy Simulation of the Wind Turbine Wake Characteristics in the Numerical Wind Tunnel Model
,”
J. Wind Eng. Ind. Aerodyn.
,
112
, pp.
11
24
.10.1016/j.jweia.2012.09.002
8.
Simms
,
D.
,
Schreck
,
S.
,
Hand
,
M.
, and
Fingersh
,
L.
,
2001
, “
NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements
,” NREL, Golden, CO, Report No. NREL/TP-500-29494.
9.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” NREL, Golden, CO, Report No. NREL/TP-500-29955.
10.
Snel
,
H.
,
Schepers
,
J.
, and
Montgomerie
,
B.
,
2007
, “
The Mexico Project (Model Experiments in Controlled Conditions): The Database and First Results of Data Processing and Interpretations
,”
J. Phys.: Conf. Ser.
,
75
, p. 1–11.10.1088/1742-6596/75/1/012014
11.
Gerhard
,
T.
,
Sturm
,
M.
, and
Carolus
,
T.
,
2013
, “
Small Horizontal Axis Wind Turbine: Analytical Blade Design and Comparison With RANS-Prediction and First Experimental Data
,”
ASME
Paper No. GT2013-94158.10.1115/GT2013-94158
12.
Campobasso
,
M.
,
Piskopakis
,
A.
,
Drofelnik
,
J.
, and
Jackson
,
A.
,
2013
, “
Turbulent Navier–Stokes Analysis of an Oscillating Wing in a Power-Extraction Regime Using the Shear Stress Transport Turbulence Model
,”
Comput. Fluids
,
88
, pp.
136
155
.10.1016/j.compfluid.2013.08.016
13.
Menter
,
F.
,
1994
, “
Two-Equation Turbulence-Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
14.
Campobasso
,
M.
,
Yan
,
M.
,
Bonfiglioli
,
A.
,
Gigante
,
F.
,
Ferrari
,
L.
,
Balduzzi
,
F.
, and
Bianchini
,
A.
,
2018
, “
Low-Speed Preconditioning for Strongly Coupled Integration of Reynolds-Averaged Navier–Stokes Equations and Two-Equation Turbulence Models
,”
Aerosp. Sci. Technol.
,
77
, pp.
286
298
.10.1016/j.ast.2018.03.015
15.
Chen
,
J.
,
Ghosh
,
A.
,
Sreenivas
,
K.
, and
Whitfield
,
D.
,
1997
, “
Comparison of Computations Using Navier–Stokes Equations in Rotating and Fixed Coordinates for Flow Through Turbomachinery
,”
35th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9,
AIAA
Paper No. 97–0878. 10.2514/6.1997-878
16.
Campobasso
,
M.
, and
Drofelnik
,
J.
,
2012
, “
Compressible Navier–Stokes Analysis of an Oscillating Wing in a Power-Extraction Regime Using Efficient Low-Speed Preconditioning
,”
Comput. Fluids
,
67
, pp.
26
40
.10.1016/j.compfluid.2012.07.002
17.
Drofelnik
,
J.
, and
Campobasso
,
M.
,
2016
, “
Comparative Turbulent Three-Dimensional Navier–Stokes Hydrodynamic Analysis and Performance Assessment of Oscillating Wings for Renewable Energy Applications
,”
Int. J. Mar. Energy
,
16
, pp.
100
115
.10.1016/j.ijome.2016.05.009
18.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Gigante
,
F.
,
Ferrara
,
G.
,
Campobasso
,
M.
, and
Ferrari
,
L.
,
2015
, “
Parametric and Comparative Assessment of Navier–Stokes CFD Technologies for Darrieus Wind Turbines Performance Analysis
,”
ASME
Paper No. GT2015-42663.10.1115/GT2015-42663
19.
Balduzzi
,
F.
,
Drofelnik
,
J.
,
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Campobasso
,
M.
,
2017
, “
Darrieus Wind Turbine Blade Unsteady Aerodynamics: A Three-Dimensional Navier–Stokes CFD Assessment
,”
Energy
,
128
, pp.
550
563
.10.1016/j.energy.2017.04.017
20.
Balduzzi
,
F.
,
Marten
,
D.
,
Bianchini
,
A.
,
Drofelnik
,
J.
,
Ferrari
,
L.
,
Campobasso
,
M. S.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
, and
Paschereit
,
C. O.
,
2018
, “
Three-Dimensional Aerodynamic Analysis of a Darrieus Wind Turbine Blade Using Computational Fluid Dynamics and Lifting Line Theory
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022602
.10.1115/1.4037750
21.
Drofelnik
,
J.
,
Da Ronch
,
A.
, and
Campobasso
,
M.
,
2018
, “
Harmonic Balance Navier–Stokes Aerodynamic Analysis of Horizontal Axis Wind Turbines in Yawed Wind
,”
Wind Energy
,
21
(
7
), pp.
515
530
.10.1002/we.2175
22.
Campobasso
,
M.
,
Sanvito
,
A.
,
Drofelnik
,
J.
,
Jackson
,
A.
,
Zhou
,
Y.
,
Xiao
,
Q.
, and
Croce
,
A.
,
2018
, “
Compressible Navier–Stokes Analysis of Floating Wind Turbine Rotor Aerodynamics
,”
ASME
Paper No. IOWTC2018-1059.10.1115/IOWTC2018-1059
23.
Venkatakrishnan
,
V.
,
1991
, “
Preconditioned Conjugate Gradient Methods for the Compressible Navier–Stokes Equations
,”
AIAA J.
,
29
(
7
), pp.
1092
1100
.10.2514/3.10708
24.
Obayashi
,
S.
,
1992
, “
Freestream Capturing for Moving Coordinates in Three Dimensions
,”
AIAA J.
,
30
(
4
), pp.
1125
1128
.10.2514/3.11037
25.
Campobasso
,
M.
, and
Baba-Ahmadi
,
M.
,
2012
, “
Analysis of Unsteady Flows Past Horizontal Axis Wind Turbine Airfoils Based on Harmonic Balance Compressible Navier–Stokes Equations With Low-Speed Preconditioning
,”
ASME J. Turbomach.
,
134
(
6
), p.
061020
.10.1115/1.4006293
26.
Campobasso
,
M.
,
Gigante
,
F.
, and
Drofelnik
,
J.
,
2014
, “
Turbulent Unsteady Flow Analysis of Horizontal Axis Wind Turbine Airfoil Aerodynamics Based on the Harmonic Balance Reynolds-Averaged Navier–Stokes Equations
,”
ASME
Paper No. GT2014-25559.10.1115/GT2014-25559
27.
Campobasso
,
M.
,
Drofelnik
,
J.
, and
Gigante
,
F.
,
2016
, “
Comparative Assessment of the Harmonic Balance Navier–Stokes Technology for Horizontal and Vertical Axis Wind Turbine Aerodynamics
,”
Comput. Fluids
,
136
, pp.
345
370
.10.1016/j.compfluid.2016.06.023
28.
Jackson
,
A.
,
Campobasso
,
M.
, and
Drofelnik
,
J.
,
2018
, “
Load Balance and Parallel I/O: Optimising COSA for Large Simulations
,”
Comput. Fluids
,
175
, pp.
157
170
.
29.
Jackson
,
A.
, and
Campobasso
,
M.
,
2011
, “
Shared-Memory, Distributed-Memory and Mixed-Mode Parallelization of a CFD Simulation Code
,”
Comput. Sci. Res. Develop.
,
26
(
3–4
), pp.
187
195
.10.1007/s00450-011-0162-4
30.
Turkel
,
E.
,
1987
, “
Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations
,”
J. Comput. Phys.
,
72
(
2
), pp.
277
298
.10.1016/0021-9991(87)90084-2
31.
Weiss
,
J.
, and
Smith
,
W.
,
1995
, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
,
33
(
11
), pp.
2050
2057
.10.2514/3.12946
32.
Campobasso
,
M.
,
Yan
,
M.
,
Drofelnik
,
J.
,
Piskopakis
,
A.
, and
Caboni
,
M.
,
2014
, “
Compressible Reynolds-Averaged Navier–Stokes Analysis of Wind Turbine Turbulent Flows Using a Fully Coupled Low-Speed Preconditioned Multigrid Solver
,”
ASME
Paper No. GT2014-25562.10.1115/GT2014-25562
33.
Campobasso
,
M.
, and
Baba-Ahmadi
,
M.
,
2011
, “
Ad-Hoc Boundary Conditions for CFD Analyses of Turbomachinery Problems With Strong Flow Gradients at Far field Boundaries
,”
ASME J. Turbomach.
,
133
(
4
), p.
041010
.10.1115/1.4002985
34.
Drofelnik
,
J.
,
2017
, “
Massively Parallel Time- and Frequency-Domain Navier–Stokes Computational Fluid Dynamics Analysis of Wind Turbines and Oscillating Wing Unsteady Flows
,” Ph.D. thesis, Glasgow University, Glasfow, UK.
35.
Sørensen
,
N.
,
2009
, “
CFD Modelling of Laminar-Turbulent Transition for Airfoils and Rotors Using the γ−Reθ Model
,”
Wind Energy
,
12
, pp.
715
733
.10.1002/we.325
36.
Timmer
,
W.
, and
van Rooij
,
R.
,
2001
, “
Some Aspects of High Angle-of-Attack Flow on Airfoils for Wind Turbine Application
,”
European Conference on Wind Energy
, Copenhagen, Denmark, pp.
355
358
.
You do not currently have access to this content.