Abstract

Integrally bladed rotors (IBRs) are meant to be rotationally periodic structures. However, unique variations in geometries and material properties from sector-to-sector, called mistuning, destroy the structural periodicity. This results in mode localization that can induce forced response levels greater than what is predicted with a tuned analysis. Furthermore, mistuning and mode localization are random processes that require stochastic treatments when analyzing the distribution of fleet responses. Generating this distribution can be computationally intensive when using the full finite element model (FEM). To overcome this expense, reduced-order models (ROMs) have been developed to accommodate fast calculations of mistuned forced response levels for a fleet of random IBRs. Usually, ROMs can be classified by two main families: frequency-based and geometry-based methods. Frequency-based ROMs assume mode shapes do not change due to mistuning. However, this assumption has been shown to cause errors that propagate to the fleet distribution. To circumvent these errors, geometry-based ROMs have been developed to provide accurate predictions. However, these methods require recalculating modal data during ROM formulations. This increases the computational expense in computing fleet distributions. A new geometry-based ROM is presented to reduce this cost. The developed ROM utilizes a Bayesian surrogate model in place of sector modal calculations required in ROM formulations. The method, surrogate modal analysis for geometry mistuning assessments (SMAGMA), will propagate uncertainties of the surrogate prediction to forced response. ROM accuracies are compared to the true forced response levels and results computed by a frequency-based ROM.

References

1.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbo-Machine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
15
21
.10.1243/JMES_JOUR_1966_008_004_02
2.
Whitehead
,
D. S.
,
1998
, “
The Maximum Factor by Which Forced Vibration of Blades Can Increase Due to Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
120
(
1
), pp.
115
119
.10.1115/1.2818061
3.
Martel
,
C.
, and
Corral
,
R.
,
2008
, “
Asymptotic Description of Maximum Mistuning Amplification of Bladed Disk Forced Response
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022506
.10.1115/1.2968868
4.
Hemberger
,
D.
,
Filsinger
,
D.
, and
Bauer
,
H.-J.
,
2012
, “
Investigations on Maximum Amplitude Amplification Factor of Real Mistuned Bladed Structures
,”
ASME
Paper No. GT2012-68084.10.1115/GT2012-68084
5.
Han
,
Y.
,
Murthy
,
R.
,
Mignolet
,
M. P.
, and
Lentz
,
J.
,
2014
, “
Optimization of Intentional Mistuning Patterns for the Mitigation of the Effects of Random Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062505
.10.1115/1.4026141
6.
Beirow
,
B.
,
Kühhorn
,
A.
,
Figaschewsky
,
F.
,
Bornhorn
,
A.
, and
Repetckii
,
O. V.
,
2018
, “
Forced Response reduction of a Blisk by Means of Intentional Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011008
.10.1115/1.4040715
7.
Mitra
,
M.
,
Bayrak
,
A. E.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2018
, “
A Sensitivity Based Heuristic for Optimal Blade Arrangement in a Linear Mistuned Rotor
,”
ASME
Paper No. GT2018-75542.10.1115/GT2018-75542
8.
Castanier
,
M. P.
,
Óttarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
439
447
.10.1115/1.2889743
9.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
10.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1997
, “
A Reduced Order Approach for the Vibration of Mistuned Bladed Disk Assemblies
,”
ASME J. Eng. Gas Turbines Power
,
119
(
1
), pp.
161
167
.10.1115/1.2815542
11.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.10.1115/1.1508384
12.
Vargiu
,
P.
,
Firrone
,
C.
,
Zucca
,
S.
, and
Gola
,
M.
,
2011
, “
A Reduced Order Model Based on Sector Mistuning for the Dynamic Analysis of Mistuned Bladed Disks
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
639
646
.10.1016/j.ijmecsci.2011.05.010
13.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
14.
Tran
,
D.-M.
,
2009
, “
Component Mode Synthesis Methods Using Partial Interface Modes: Application to Tuned and Mistuned Structures With Cyclic Symmetry
,”
Comput. Struct.
,
87
(
17
), pp.
1141
1153
.10.1016/j.compstruc.2009.04.009
15.
Pourkiaee
,
S. M.
, and
Zucca
,
S.
,
2018
, “
A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
,”
ASME
Paper No. GT2018-75223.10.1115/GT2018-75223
16.
Gutierrez
,
M.
,
Petrie-Repar
,
P.
,
Kielb
,
R.
, and
Key
,
N. L.
,
2018
, “
A Mistuned Forced Response Analysis of an Embedded Compressor Blisk Using a Reduced Order Model
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032505
.10.1115/1.4041280
17.
Waldherr
,
C.
, and
Vogt
,
D. M.
,
2018
, “
An Extension of the Classical Subset of Nominal Modes Method for the Model Order Reduction of Gyroscopic Systems
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
052501
.10.1115/1.4041117
18.
Figaschewsky
,
F.
,
Hanschke
,
B.
, and
Kühhorn
,
A.
,
2018
, “
Efficient Generation of Engine Representative Tip Timing Data Based on a Reduced Order Model for Bladed Rotors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
012503
.10.1115/1.4040748
19.
Kaneko
,
Y.
,
Mori
,
K.
, and
Ooyama
,
H.
,
2018
, “
Practical Optimization of Mistuned Bladed Disk of Steam Turbine With Free-Standing Blade Structure for Forced and Self-Excited Vibration
,”
ASME
Paper No. GT2018-75056.10.1115/GT2018-75056
20.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2013
, “
Accuracies of Reduced Order Models of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
136
(
7
), p.
074501
.10.1115/1.4025666
21.
Beck
,
J. A.
,
Brown
,
J. M.
,
Slater
,
J. C.
, and
Cross
,
C. J.
,
2013
, “
Probabilistic Mistuning Assessment Using Nominal and Geometry Based Mistuning Methods
,”
ASME J. Turbomach.
,
135
(
5
), p.
051004
.10.1115/1.4023103
22.
Lim
,
S.-H.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2004
, “
Vibration Modeling of Bladed Disks Subject to Geometric Mistuning and Design Changes
,”
AIAA
Paper No. 2004-1686.10.2514/6.2004-1686
23.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
3
), p.
031007
.10.1115/1.2987237
24.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2011
, “
Reduced Order Model of a Bladed Rotor With Geometric Mistuning: Comparison Between Modified Modal Domain Analysis and Frequency Mistuning Approach
,”
ASME
Paper No. GT2011-45391.10.1115/GT2011-45391
25.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.10.2514/1.J051140
26.
Popig
,
F.
,
Hönisch
,
P.
, and
Kühhorn
,
A.
,
2015
, “
Experimental and Numerical Analysis of Geometrical Induced Mistuning
,”
ASME
Paper No. GT2015-43272.10.1115/GT2015-43272
27.
Beck
,
J. A.
,
Brown
,
J. M.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2014
, “
Component-Mode Reduced-Order Models for Geometric Mistuning of Integrally Bladed Rotors
,”
AIAA J.
,
52
(
7
), pp.
1345
1356
.10.2514/1.J052420
28.
Beck
,
J. A.
,
Brown
,
J. M.
,
Kaszynski
,
A. A.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2015
, “
Geometric Mistuning Reduced-Order Models for Integrally Bladed Rotors With Mistuned Disk-Blade Boundaries
,”
ASME J. Turbomach.
,
137
(
7
), p.
071001
.10.1115/1.4029122
29.
Vishwakarma
,
V.
, and
Sinha
,
A.
,
2015
, “
Estimation of Forcing Function for a Geometrically Mistuned Bladed Rotor Via Modified Modal Domain Analysis
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042507
.10.1115/1.4031563
30.
Vishwakarma
,
V.
,
Sinha
,
A.
,
Bhartiya
,
Y.
, and
Brown
,
J. M.
,
2015
, “
Modified Modal Domain Analysis of a Bladed Rotor Using Coordinate Measurement Machine Data on Geometric Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042502
.10.1115/1.4028615
31.
Baek
,
S.
, and
Epureanu
,
B.
,
2017
, “
Reduced-Order Models of Blisks With Small Geometric Mistuning
,”
ASME J. Vib. Acoust.
,
139
(
4
), p.
041003
.10.1115/1.4036105
32.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kühhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
33.
Tang
,
W.
,
Baek
,
S.
, and
Epureanu
,
B. I.
,
2016
, “
Reduced-Order Models for Blisks With Small and Large Mistuning and Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012507
.10.1115/1.4034212
34.
Gillaugh
,
D. L.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Johnston
,
D. A.
, and
Slater
,
J. C.
,
2018
, “
Accurate Strain Gauge Limits Through Geometry Mistuning Modeling
,”
J. Propul. Power
,
34
(
6
), pp.
1
8
.10.2514/1.B36849
35.
Kurstak
,
E.
,
Wilber
,
R.
, and
D'Souza
,
K.
,
2018
, “
Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051018
.10.1115/1.4041204
36.
Vishwakarma
,
V.
, and
Sinha
,
A.
,
2015
, “
Forced Response Statistics of a Bladed Rotor With Geometric Mistuning
,”
AIAA J.
,
53
(
9
), pp.
2776
2781
.10.2514/1.J053423
37.
Beck
,
J. A.
,
Kaszynski
,
A.
,
Scott-Emuakpor
,
O. E.
, and
Brown
,
J.
,
2015
, “
Validation of Geometric Mistuning Reduced-Order Models for Single and Dual Flow-Path Integrally Bladed Rotors
,”
AIAA
Paper No. 2015-1373.10.2514/6.2015-1373
38.
Henry
,
E. B.
,
Brown
,
J. M.
, and
Slater
,
J. C.
,
2015
, “
A Fleet Risk Prediction Methodology for Mistuned Ibrs Using Geometric Mistuning Models
,”
AIAA
Paper No. 2015-1144.10.2514/6.2015-1144
39.
Beck
,
J. A.
,
Brown
,
J. M.
,
Runyon
,
B.
, and
Scott-Emuakpor
,
O. E.
,
2017
, “
Probabilistic Study of Integrally Bladed Rotor Blends Using Geometric Mistuning Models
,”
AIAA
Paper No. 2017-0860.10.2514/6.2017-0860
40.
Henry
,
E. B.
,
Brown
,
J. M.
, and
Beck
,
J. A.
,
2016
, “
Reduced Order Geometric Mistuning Models Using Principal Component Analysis Approximations
,”
AIAA
Paper No. 2016-0706.10.2514/6.2016-0706
41.
Henry
,
E. B.
,
Brown
,
J. M.
, and
Beck
,
J. A.
,
2017
, “
Mistuned Rotor Reduced Order Modeling With Surrogate-Modeled Airfoil Substructures
,”
AIAA
Paper No. 2017-1600.10.2514/6.2017-1600
42.
Beck
,
J. A.
,
Brown
,
J. M.
,
Kaszynski
,
A. A.
, and
Carper
,
E. B.
,
2019
, “
Bayesian Surrogate Modeling of Bladed Disk Sector Mode Shape and Geometrical Spatial Variations
,”
AIAA
Paper No. 2019-2002.10.2514/6.2019-2002
43.
Zhou
,
K.
, and
Tang
,
J.
,
2018
, “
Uncertainty Quantification in Structural Dynamic Analysis Using Two-Level Gaussian Processes and Bayesian Inference
,”
J. Sound Vib.
,
412
, pp.
95
115
.10.1016/j.jsv.2017.09.034
44.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2013
, “
Reduced Order Modeling of a Bladed Rotor With Geometric Mistuning Via Estimated Deviations in Mass and Stiffness Matrices
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052501
.10.1115/1.4007783
45.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
46.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2014
, “
Automated Finite Element Model Mesh Updating Scheme Applicable to Mistuning Analysis
,”
ASME
Paper No. GT2014-26925.10.1115/GT2014-26925
47.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2015
, “
Experimental Validation of a Mesh Quality Optimized Morphed Geometric Mistuning Model
,”
ASME
Paper No. GT2015-43150.10.1115/GT2015-43150
48.
Kaszynski
,
A.
,
Brown
,
J.
, and
Beck
,
J.
,
2015
, “
Experimental Validation of an Optically Measured Geometric Mistuning Model Using a System id Approach
,”
AIAA
Paper No. 2015-1371.10.2514/6.2015-1371
49.
Donoho
,
D. L.
,
2000
, “
High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality
,”
AMS Conference on Math Challenges of the 21st Century
,
University of California
,
Los Angeles, CA
, pp.
1
33
.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.3392
50.
Bishop
,
C.
, and
Lasserre
,
J.
,
2007
,
Generative or Discriminative? Getting the Best of Both Worlds
, Vol.
8
,
Oxford University Press
,
Oxford, UK
, pp.
3
23
.
51.
Virtanen
,
S.
,
Klami
,
A.
,
Khan
,
S. A.
, and
Kaski
,
S.
,
2012
, “
Bayesian Group Vector Analysis
,”
15th International Conference of Artificial Intelligence and Statistics
,
La Palma, Spain
,
Apr. 21–23
, pp.
1269
1277
.http://smartproof.cenveo.com/smartproof/common/AS/editor?pwd=2e7849e55a0c
52.
Klami
,
A.
,
Virtanen
,
S.
,
Leppäaho
,
E.
, and
Kaski
,
S.
,
2015
, “
Group Factor Analysis
,”
IEEE Trans. Neural Networks Learn. Syst.
,
26
(
9
), pp.
2136
2147
.10.1109/TNNLS.2014.2376974
53.
Tucker
,
L. R.
,
1958
, “
An Inter-Battery Method of Factor Analysis
,”
Psychometrika
,
23
(
2
), pp.
111
136
.10.1007/BF02289009
54.
McDonald
,
R. P.
,
1970
, “
Three Common Factor Models for Groups of Variables
,”
Psychometrika
,
35
(
1
), pp.
111
128
.10.1007/BF02290597
55.
Browne
,
M. W.
,
1979
, “
The Maximum-Likelihood Solution in Inter-Battery Factor Analysis
,”
Br. J. Math. Stat. Psychol.
,
32
(
1
), pp.
75
86
.10.1111/j.2044-8317.1979.tb00753.x
56.
Browne
,
M. W.
,
1980
, “
Factor Analysis of Multiple Batteries by Maximum Likelihood
,”
Br. J. Math. Stat. Psychol.
,
33
(
2
), pp.
184
199
.10.1111/j.2044-8317.1980.tb00607.x
57.
Jia
,
Y.
,
Salzmann
,
M.
, and
Darrell
,
T.
,
2010
, “
Factorized Latent Spaces With Structured Sparsity
,”
23rd International Conference on Neural Information Processing Systems
(
NIPS
), pp.
982
990
.https://papers.nips.cc/paper/3953-factorized-latent-spaces-with-structured-sparsity
58.
Gupta
,
S. K.
,
Phung
,
D.
,
Adams
,
B.
, and
Venkatesh
,
S.
,
2011
, “
A Bayesian Framework for Learning Shared and Individual Subspaces From Multiple Data Sources
,”
Advances in Knowledge Discovery and Data Mining
,
Springer
,
Berlin
, pp.
136
147
.
59.
Gupta
,
S.
,
Phung
,
D.
, and
Venkatesh
,
S.
,
2012
, “
A Bayesian Nonparametric Joint Factor Model for Learning Shared and Individual Subspaces From Multiple Data Sources
,”
SIAM International Conference on Data Mining
, University of Auckland, Auckland, New Zealand , pp.
200
211
.10.1137/1.9781611972825.18
60.
Klami
,
A.
,
Virtanen
,
S.
, and
Kaski
,
S.
,
2013
, “
Bayesian Canonical Correlation Analysis
,”
J. Mach. Learn. Res.
,
14
(
1
), pp.
965
1003
.http://jmlr.org/papers/v14/klami13a.html
61.
MacKay
,
D. J. C.
,
1995
, “
Probable Networks and Plausible Predictions—A Review of Practical Bayesian Methods for Supervised Neural Networks
,”
Network: Comput. Neural Syst.
,
6
(
3
), pp.
469
505
.10.1088/0954-898X_6_3_011
62.
Neal
,
R. M.
,
1996
,
Bayesian Learning for Neural Networks
, 1st ed., Vol.
118
,
Springer-Verlag
,
New York
.
63.
Tipping
,
M. E.
,
2001
, “
Sparse Bayesian Learning and the Relevance Vector Machine
,”
J. Mach. Learn. Res.
,
1
, pp.
211
244
.
64.
Jaakkola
,
T. S.
, and
Jordan
,
M. I.
,
2000
, “
Bayesian Parameter Estimation Via Variational Methods
,”
Stat. Comput.
,
10
(
1
), pp.
25
37
.10.1023/A:1008932416310
65.
Wainwright
,
M. J.
, and
Jordan
,
M. I.
,
2008
, “
Graphical Models, Exponential Families, and Variational Inference
,”
Found. Trends Mach. Learn.
,
1
(
1–2
), pp.
1
305
.10.1561/2200000001
66.
Koller
,
D.
, and
Friedman
,
N.
,
2009
,
Probabilistic Graphical Models: Principles and Techniques
,
MIT Press, Massachusetts Institute of Technology
,
Cambridge, MA
.
67.
Avalos
,
J.
,
Mignolet
,
M. P.
, and
Soize
,
C.
,
2009
, “
Response of Bladed Disks With Mistuned Blade-Disk Interfaces
,”
ASME
Paper No. GT2009-5958010.1115/GT2009-59580.
You do not currently have access to this content.