A generalized and efficient technique of reduced-order model (ROM) is proposed in this paper for stability and steady-state response analysis of an asymmetric rotor based on three-dimensional (3D) finite element model. The equations of motion of the asymmetric rotor-bearing system are established in the rotating frame. Therefore, the periodic time-variant coefficients only exist at a tiny minority of degrees-of-freedom (DOFs) of bearings. During the model reduction process, the asymmetric rotor-bearing system is divided into rotor and bearings. Only the rotor was reduced. And the physical coordinates of bearings are kept in the reduced model during reduction. Then, the relationship between the rotor and bearings is established by inserting periodic time-variant stiffness and damping matrix of bearings into the reduced model of rotor. There is no reduction to the matrices of bearings, which guarantees the accuracy of the calculation. This technique combined with fixed-interface component mode synthesis (CMS) and free-interface CMS is compared with other existing modal reduction method on an off-center asymmetric rotor and shows good performance.

References

1.
Huang
,
S.
,
Liu
,
Z.
, and
Su
,
J.
, “
On Double Frequency Vibration of a Generator-Bearing System With Asymmetrical Stiffness
,”
ASME
Paper No. IMECE2002-39229.
2.
Sayed
,
M.
, and
Kamel
,
M.
,
2011
, “
Stability Study and Control of Helicopter Blade Flapping Vibrations
,”
Appl. Math. Modell.
,
35
(
6
), pp.
2820
2837
.
3.
Sanches
,
L.
,
Michon
,
G.
,
Berlioz
,
A.
, and
Alazard
,
D.
,
2011
, “
Instability Zones for Isotropic and Anisotropic Multibladed Rotor Configurations
,”
Mech. Mach. Theory
,
46
(
8
), pp.
1054
1065
.
4.
Al-Shudeifat
,
M. A.
,
2013
, “
On the Finite Element Modeling of the Asymmetric Cracked Rotor
,”
J. Sound Vib.
,
332
(
11
), pp.
2795
2807
.
5.
Han
,
Q.
, and
Chu
,
F.
,
2012
, “
Parametric Instability of a Rotor-Bearing System With Two Breathing Transverse Cracks
,”
Eur. J. Mech.—A/Solids
,
36
, pp.
180
190
.
6.
Ebrahimi
,
A.
,
Heydari
,
M.
, and
Behzad
,
M.
,
2014
, “
A Continuous Vibration Theory for Rotors With an Open Edge Crack
,”
J. Sound Vib.
,
333
(
15
), pp.
3522
3535
.
7.
Boru
,
F. E.
,
2010
,
Numerical and Experimental Response and Stability Investigations of Anisotropic Rotor-Bearing Systems
,
Kassel University Press GmbH
,
Kassel, Germany
.
8.
Nandi
,
A.
, and
Neogy
,
S.
,
2005
, “
An Efficient Scheme for Stability Analysis of Finite Element Asymmetric Rotor Models in a Rotating Frame
,”
Finite Elem. Anal. Des.
,
41
(
14
), pp.
1343
1364
.
9.
Kang
,
Y.
,
Shih
,
Y. P.
, and
Lee
,
A. C.
,
1992
, “
Investigation on the Steady-State Responses of Asymmetric Rotors
,”
ASME J. Vib. Acoust.
,
114
(
2
), pp.
194
208
.
10.
Brosens
,
P. J.
, and
Crandall
,
S. H.
,
1961
, “
Whirling of Unsymmetrical Rotors
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
355
362
.
11.
Crandall
,
S. H.
, and
Brosens
,
P. J.
,
1961
, “
On the Stability of Rotation of a Rotor With Rotationally Unsymmetric Inertia and Stiffness Properties
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
567
849
.
12.
Yamamoto
,
T.
, and
Ōta
,
H.
,
1964
, “
On the Unstable Vibrations of a Shaft Carrying an Unsymmetrical Rotor
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
515
522
.
13.
Yamamoto
,
T.
, and
Ota
,
H.
,
1967
, “
The Damping Effect on Unstable Whirlings of a Shaft Carrying an Unsymmetrical Rotor
,” Memoirs of the Faculty of Engineering Nagoya University, 19(2), pp.
197
215
.
14.
Bishop
,
R. E. D.
, and
Parkinson
,
A. G.
,
1965
, “
Second Order Vibration of Flexible Shafts
,”
Philos. Trans. R. Soc. B Biol. Sci.
,
259
(
1095
), pp.
1
31
.
15.
Inagaki
,
T.
,
Kanki
,
H.
, and
Shiraki
,
K.
,
1980
, “
Response Analysis of a General Asymmetric Rotor-Bearing System
,”
ASME J. Mech. Des.
,
102
(
1
), pp.
147
157
.
16.
Kang
,
Y.
,
Lee
,
A. C.
, and
Shih
,
Y. P.
,
1994
, “
A Modified Transfer Matrix Method for Asymmetric Rotor-Bearing Systems
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
309
317
.
17.
Kang
,
Y.
,
Lee
,
Y. G.
, and
Chen
,
S. C.
,
1997
, “
Instability Analysis of Unsymmetrical Rotor-Bearing Systems Using the Transfer Matrix Method
,”
J. Sound Vib.
,
199
(
3
), pp.
381
400
.
18.
Genta
,
G.
,
1988
, “
Whirling of Unsymmetrical Rotors: A Finite Element Approach Based on Complex Co-Ordinates
,”
J. Sound Vib.
,
124
(
1
), pp.
27
53
.
19.
Jei
,
Y. G.
, and
Lee
,
C. W.
,
1988
, “
Finite Element Model of Asymmetrical Rotor-Bearing Systems
,”
Ksme J.
,
2
(
2
), pp.
116
124
.
20.
Jei
,
Y. G.
, and
Lee
,
C. W.
,
1992
, “
Modal Analysis of Continuous Asymmetrical Rotor Bearing Systems
,”
J. Sound Vib.
,
152
(
2
), pp.
245
262
.
21.
Rao
,
J.
, and
Sreenivas
,
R.
,
2003
, “
Dynamics of Asymmetric Rotors Using Solid Models
,” International Gas Turbine Congress, Tokyo, Japan, Nov. 2–7, pp.
2
7
.
22.
Zuo
,
Y.
,
Wang
,
J.
, and
Ma
,
W.
,
2017
, “
Quasimodes Instability Analysis of Uncertain Asymmetric Rotor System Based on 3D Solid Element Model
,”
J. Sound Vib.
,
390
, pp.
192
204
.
23.
Lee
,
C.-W.
,
Han
,
D.-J.
,
Suh
,
J.-H.
, and
Hong
,
S.-W.
,
2007
, “
Modal Analysis of Periodically Time-Varying Linear Rotor Systems
,”
J. Sound Vib.
,
303
(
3–5
), pp.
553
574
.
24.
Ma
,
W. M.
,
Wang
,
J. J.
, and
Wang
,
Z.
,
2015
, “
Frequency and Stability Analysis Method of Asymmetric Anisotropic Rotor-Bearing System Based on Three-Dimensional Solid Finite Element Method
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
102502
.
25.
Nandi
,
A.
,
2004
, “
Reduction of Finite Element Equations for a Rotor Model on Non-Isotropic Spring Support in a Rotating Frame
,”
Finite Elem. Anal. Des.
,
40
(
9–10
), pp.
935
952
.
26.
Lazarus
,
A.
,
Prabel
,
B.
, and
Combescure
,
D.
,
2010
, “
A 3D Finite Element Model for the Vibration Analysis of Asymmetric Rotating Machines
,”
J. Sound Vib.
,
329
(
18
), pp.
3780
3797
.
27.
Wang
,
S.
,
Wang
,
Y.
,
Zi
,
Y.
, and
He
,
Z.
,
2015
, “
A 3D Finite Element-Based Model Order Reduction Method for Parametric Resonance and Whirling Analysis of Anisotropic Rotor-Bearing Systems
,”
J. Sound Vib.
,
359
, pp.
116
135
.
28.
Bampton
,
M. C. C.
, and
Craig
,
R. R.
, Jr.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
29.
Hintz
,
R. M.
,
1975
, “
Analytical Methods in Component Modal Synthesis
,”
AIAA J.
,
13
(
8
), pp.
1007
1016
.
30.
Rubin
,
S.
,
1975
, “
Improved Component-Mode Representation for Structural Dynamic Analysis
,”
AIAA J.
,
13
(
8
), pp.
995
1006
.
You do not currently have access to this content.