Commercial/military fixed-wing aircraft and rotorcraft engines often have to operate in significantly degraded environments consisting of sand, dust, ash, and other particulates. Marine gas turbine engines are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, calcia–magnesia–alumina–silicate (CMAS) attack, oxidation, and plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. This research represents the complex thermochemomechanical fluid structure interaction problem of semimolten particulate impingement and infiltration onto ceramic thermal barrier coatings (TBCs) into its canonical forms. The objective of this research work is to understand the underpinning interface science of interspersed graded ceramic/metal and ceramic/ceramic composites at the grain structure level for robust coatings and bulk material components for vehicle propulsion systems. This research enhances our understanding of the fundamental relationship between interface properties and the thermomechanical behavior in dissimilar materials for materials by design systems, and creates the ability to develop and fabricate materials with targeted macroscale properties as a function of their interfacial behavior. This project creates a framework to enable the engineered design of solid–solid and liquid–solid interfaces in dissimilar functionalized materials to establish a paradigm shift toward science from the traditional empiricism in engineering TBCs and high temperature highly loaded bulk materials. An integrated approach of modeling and simulation, characterization, fabrication, and validation to solve the fundamental questions of interface mechanisms which affect the properties of novel materials will be validated to guide component material solutions to visionary 2040+ military vehicle propulsion systems.

References

1.
Miller
,
R. A.
,
1987
, “
Current Status of Thermal Barrier Coatings—An Overview
,”
Surf. Coat. Technol.
,
30
(
1
), pp.
1
11
.
2.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.
3.
Smialek
,
J. L.
,
Archer
,
F. A.
, and
Garlick
,
R. G.
,
1994
, “
Turbine Airfoil Degradation in the Persian Gulf War
,”
JOM
,
46
(
12
), pp.
39
41
.
4.
Borom
,
M. P.
,
Johnson
,
C. A.
, and
Peluso
,
L. A.
,
1996
, “
Role of Environment Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
86–87
(
Part 1
), pp.
116
126
.
5.
Levi
,
C. G.
,
Hutchinson
,
J. W.
,
Vidal-Setif
,
M.-H.
, and
Johnson
,
C. A.
,
2012
, “
Environmental Degradation of Thermal Barrier Coatings by Molten Deposits
,”
MRS Bull.
,
37
(
10
), pp.
932
941
.
6.
Kramer
,
S.
,
Yang
,
J.
, and
Levi
,
C. G.
,
2008
, “
Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings With CMAS Melts
,”
J. Am. Ceram. Soc.
,
91
(
2
), pp.
576
583
.
7.
Rai
,
A. K.
,
Bhattacharya
,
R. S.
,
Wolfe
,
D. E.
, and
Eden
,
T. J.
,
2010
, “
CMAS-Resistant Thermal Barrier Coatings
,”
Int. J. Appl. Ceram. Technol.
,
7
(
5
), pp.
662
674
.
8.
Aygun
,
A.
,
Vasiliev
,
A. L.
,
Padture
,
N. P.
, and
Ma
,
X.
,
2007
, “
Novel Thermal Barrier Coatings That Are Resistant to High-Temperature Attack by Glassy Deposits
,”
Acta Mater.
,
55
(
20
), pp.
6734
6745
.
9.
Drexler
,
J. M.
,
Shinoda
,
K.
,
Ortiz
,
A. L.
,
Li
,
D.
,
Vasiliev
,
A. L.
,
Gledhill
,
A. D.
,
Sampath
,
S.
, and
Padture
,
N. P.
,
2010
, “
Air Plasma-Sprayed Thermal Barrier Coatings That Are Resistant to High-Temperature Attack by Glassy Deposits
,”
Acta Mater.
,
58
(
20
), pp.
6835
6844
.
10.
Drexler
,
J.
,
Aygun
,
A.
,
Li
,
D.
,
Vaβen
,
R.
,
Steinke
,
T.
, and
Padture
,
N. P.
,
2010
, “
Thermal-Gradient Testing of Thermal Barrier Coatings Under Simultaneous Attack by Molten Glassy Deposits and Its Mitigation
,”
Surf. Coat. Technol.
,
204
(
16–17
), pp.
2683
2688
.
11.
Evans
,
A. G.
,
Mumm
,
D. R.
,
Hutchinson
,
J. W.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
,
2001
, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
,
46
(
5
), pp.
505
553
.
12.
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2002
, “
On the Delamination of Thermal Barrier Coatings in a Thermal Gradient
,”
Surf. Coat. Technol.
,
149
(
2–3
), pp.
179
184
.
13.
Suresh
,
S.
, and
Mortensen
,
A.
,
1997
, “
Functionally Graded Metals and Metal-Ceramic Composites—Part 2: Thermomechanical Behaviour
,”
Int. Mater. Rev.
,
42
(
3
), pp.
85
116
.
14.
Mo
,
Y.
, and
Szlufarska
,
I.
,
2007
, “
Simultaneous Enhancement of Toughness, Ductility, and Strength of Nanocrystalline Ceramics at High Strain-Rates
,”
Appl. Phys. Lett.
,
90
(
18
), p.
181926
.
15.
Campbell
,
F. C.
, ed.,
2012
,
Lightweight Materials: Understanding the Basics
,
ASM International
,
Materials Park, OH
, Chap. 11.
16.
Sampath
,
S.
,
Herman
,
H.
,
Shimoda
,
N.
, and
Saito
,
T.
,
1995
, “
Thermal Spray Processing of FGMs
,”
MRS Bull.
,
20
(
1
), pp.
27
31
.
17.
Praveen
,
G. N.
, and
Reddy
,
J. N.
,
1998
, “
Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates
,”
Int. J. Solids Struct.
,
35
(
33
), pp.
4457
4476
.
18.
Bao
,
G.
, and
Wang
,
L.
,
1995
, “
Multiple Cracking in Functionally Graded Ceramic/Metal Coatings
,”
Int. J. Solids Struct.
,
32
(
19
), pp.
2853
2871
.
19.
Cantwell
,
P. R.
,
Tang
,
M.
,
Dillon
,
S. J.
,
Luo
,
J.
,
Rohrer
,
G. S.
, and
Harner
,
M. P.
,
2014
, “
Grain Boundary Complextions
,”
Acta Mater.
,
62
, pp.
1
48
.
20.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M. J.
,
Barnett
,
B. D.
,
Pepi
,
M. S.
,
Hopkins
,
D.
,
Gazonas
,
G.
, and
Kerner
,
K. A.
,
2015
, “
Blade Surface-Particle Interaction and Multifunctional Coatings For Gas Turbine Engine
,”
AIAA
Paper No. 2015-4193.
21.
LSTC
,
2007
,
LS-DYNA: Keyword User's Manual
, Ver. 971, Livermore Software Technology Corporation, Livermore, CA.
22.
Tabakoff
,
W.
,
1991
, “
Measurements of Particles Rebound Characteristics on Materials Used in Gas Turbines
,”
J. Propul.
,
7
(
5
), pp.
805
813
.
23.
Hamed
,
A.
,
1988
, “
Effect of Particle Characteristics on Trajectories and Blade Impact Patterns
,”
ASME J. Fluids Eng.
,
110
(
1
), pp.
33
37
.
24.
Murugan
,
D. M.
,
Tabakoff
,
W.
, and
Hamed
,
A.
,
1994
, “
Computation of Particle Restitution Characteristics Using DYNA3D for Turbomachinery Application
,”
AIAA
Paper No 94-3201.
25.
Tabakoff
,
W.
,
Murugan
,
D. M.
, and
Hamed
,
A.
,
1994
, “
Effect of Target Materials on the Particle Restitution Characteristics for Turbomachinery Application
,”
AIAA
Paper No. AIAA-94-0143.
26.
Stöver
,
D.
,
Pracht
,
G.
,
Lehmann
,
H.
,
Dietrich
,
M.
,
Döring
,
J.-E.
, and
Vaβen
,
R.
,
2004
, “
New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
13
(
1
), pp.
76
83
.
27.
Jordan
,
E. H.
,
Xie
,
L.
,
Ma
,
X.
,
Gell
,
M.
,
Padture
,
N. P.
,
Cetegen
,
B.
,
Ozturk
,
A.
,
Roth
,
J.
,
Xiao
,
T. D.
, and
Bryant
,
P. E. C.
,
2004
, “
Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray
,”
J. Therm. Spray Technol.
,
13
(
1
), pp.
57
65
.
28.
Killinger
,
A.
,
Gadow
,
R.
,
Mauer
,
G.
,
Guignard
,
A.
,
Vaβen
,
R.
, and
Stöver
,
D.
,
2011
, “
Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes
,”
J. Therm. Spray Technol.
,
20
(
4
), pp.
677
695
.
You do not currently have access to this content.