A new method is developed for the forced response analysis of mistuned bladed disks manufactured from anisotropic materials and mistuned by different orientations of material anisotropy axes. The method uses (i) sector finite element (FE) models of anisotropic bladed disks and (ii) FE models of single blades and allows the calculation of displacements and stresses in a mistuned assembly. A high-fidelity reduction approach is proposed which ensures high-accuracy modeling by introducing an enhanced reduction basis. The reduction basis includes the modal properties of specially selected blades and bladed disks. The technique for the choice of the reduction basis has been developed, which provides the required accuracy while keeping the computation expense acceptable. An approach for effective modeling of anisotropy-mistuned bladed disk without a need to create a FE model for each mistuning pattern is developed. The approach is aimed at fast statistical analysis based on Monte Carlo simulations. All components of the methodology for anisotropy-mistuned bladed disks are demonstrated on the analysis of models of practical bladed disks. Effects of anisotropy mistuning on forced response levels are explored.

References

1.
Ewins
,
D. J.
,
1973
, “
Vibration Characteristics of Bladed Disc Assemblies
,”
J. Mech. Eng. Sci.
,
15
(
3
), pp.
165
186
.
2.
Ewins
,
D. J.
,
1991
, “
The Effects of Blade Mistuning on Vibration Response—A Survey
,”
IFToMM Fourth International Conference on Rotordynamics
, Prague, Czech Republic.
3.
Slater
,
J. C.
,
Minkiewicz
,
G. R.
, and
Blair
,
A. J.
,
1999
, “
Forced Response of Bladed Disk Assemblies—A Survey
,”
Shock Vib. Dig.
,
31
(
1
), pp.
17
24
.
4.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modelling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.
5.
Pierre
,
C.
,
1988
, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.
6.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistuning
,”
J. Vib. Acoust. Stress Reliab. Des.
,
106
(
2
), pp.
204
210
.
7.
Kuang
,
J. H.
, and
Huang
,
B. W.
,
1999
, “
Mode Localization of a Cracked Blade-Disks
,”
ASME J. Eng. Gas Turbines Power
,
121
(
2
), pp.
335
341
.
8.
Castanier
,
M. P.
,
Ottarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
439
447
.
9.
Lim
,
S. H.
,
Bladh
,
R.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2007
, “
A Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.
10.
Yang
,
M. T.
, and
Griffin
,
J. H.
,
1999
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.
11.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.
12.
Moyroud
,
F.
,
Fransson
,
T.
, and
Jacquet-Richardet
,
G.
,
2000
, “
A Comparison of Two Finite Element Reduction Techniques for Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
942
952
.
13.
Petrov
,
E. P.
,
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
,
2002
, “
A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
586
597
.
14.
Spittle
,
P.
,
2003
, “
Gas Turbine Technology
,”
Phys. Educ.
,
38
(
6
), pp.
504
511
.
15.
Manetti
,
M.
,
Giovannetti
,
I.
,
Pieroni
,
N.
,
Horculescu
,
H.
,
Peano
,
G.
,
Zonfrillo
,
G.
, and
Giannozzi
,
M.
,
2009
, “
The Dynamic Influence of Crystal Orientation on a Second Generation Single Crystal Material for Turbine Buckets
,”
ASME
Paper No. GT2009-59091.
16.
Savage
,
M. W. R.
,
2011
, “
The Influence of Crystal Orientation on the Elastic Stresses of a Single Crystal Nickel-Based Turbine Blade
,”
ASME
Paper No. GT2011-45309.
17.
Kaneko
,
Y.
,
2011
, “
Study on Vibration Characteristics of Single Crystal Blade and Directionally Solidified Blade
,”
ASME
Paper No. GT2011-45032.
18.
Kaneko
,
Y.
,
2015
, “
Resonant Response and Random Response Analysis of Mistuned Bladed Disk Consisting of Directionally Solidified Blade
,”
ASME
Paper No. GT2015-42875.
19.
Lekhnitskii
,
S. G.
,
1963
,
Theory Elasticity of an Anisotropic Elastic Body
,
Holden-Day
,
San Francisco, CA
.
20.
Arakere
,
N. K.
, and
Swanson
,
G. R.
,
2002
, “
Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
161
176
.
21.
Duan
,
Y.
,
Zang
,
C.
, and
Petrov
,
E.
,
2016
, “
Forced Response Analysis of High-Mode Vibrations for Mistuned Bladed Discs With Effective Reduced-Order Models
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112502
.
22.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.
23.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
, “
DACE—A Matlab Kriging Toolbox—Version 2.0, Informatics and Mathematical Modelling
,” Technical University of Denmark, Kongens Lyngby, Denmark, Report No.
IMM-REP-2002-12
.
24.
Hu
,
X. A.
,
Yang
,
X. G.
,
Shi
,
D. Q.
,
Yu
,
H. C.
, and
Ren
,
T. T.
,
2016
, “
Constitutive Modelling of a Directionally Solidified Nickel-Based Superalloy DZ125 Subjected to Thermal Mechanical Creep Fatigue Loadings
,”
Rare Met.
, epub.
You do not currently have access to this content.