This paper analyzes transversal thermoacoustic oscillations in an experimental gas turbine combustor utilizing dynamical system theory. Limit-cycle acoustic motions related to the first linearly unstable transversal mode of a given 3D combustor configuration are modeled and reconstructed by means of a low-order dynamical system simulation. The source of nonlinearity is solely allocated to flame dynamics, saturating the growth of acoustic amplitudes, while the oscillation amplitudes are assumed to always remain within the linearity limit. First, a reduced order model (ROM) which reproduces the combustor's modal distribution and damping of acoustic oscillations is derived. The ROM is a low-order state-space system, which results from a projection of the linearized Euler equations (LEE) into their truncated eigenspace. Second, flame dynamics are modeled as a function of acoustic perturbations by means of a nonlinear transfer function. This function has a linear and a nonlinear contribution. The linear part is modeled analytically from first principles, while the nonlinear part is mathematically cast into a cubic saturation functional form. Additionally, the impact of stochastic forcing due to broadband combustion noise is included by additive white noise sources. Then, the acoustic and the flame system is interconnected, where thermoacoustic noncompactness due to the transversal modes' high frequency (HF) is accounted for by a distributed source term framework. The resulting nonlinear thermoacoustic system is solved in frequency and time domain. Linear growth rates predict linear stability, while envelope plots and probability density diagrams of the resulting pressure traces characterize the thermoacoustic performance of the combustor from a dynamical systems theory perspective. Comparisons against experimental data are conducted, which allow the rating of the flame modes in terms of their capability to reproduce the observed combustor dynamics. Ultimately, insight into the physics of high-frequency, transversal thermoacoustic systems is created.

References

1.
Sattelmayer
,
T.
,
2010
, “
Stationäre Gasturbinen
,”
Grundlagen der Verbrennung in stationären Gasturbinen
, 2. neu bearbeitete Auflage,
Springer-Verlag
,
Heidelberg, Germany
, pp.
397
452
.
2.
Schuermans
,
B.
,
Bothien
,
M. R.
,
Maurer
,
M.
, and
Bunkute
,
B.
,
2015
, “
Combined Acoustic Damping-Cooling System for Operational Flexibility of GT26/24 Reheat Combustors
,”
ASME
Paper No. GT2015-42287.
3.
Schwing
,
J.
, and
Sattelmayer
,
T.
,
2013
, “
High-Frequency Instabilities in Cylindrical Flame Tubes: Feedback Mechanism and Damping
,”
ASME
Paper No. GT2013-94064.
4.
Zellhuber
,
M.
,
Schwing
,
J.
,
Schuermans
,
B.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2014
, “
Experimental and Numerical Investigations of Thermoacoustic Sources Related to High-Frequency Instabilities
,”
Int. J. Spray Combust. Dyn.
,
6
(
1
), pp.
1
34
.
5.
Culick
,
F. E. C.
,
2006
,
Unsteady Motions in Combustion Chambers for Propulsion Systems
(Number AC/323(AVT-039)TP/103 in RTO AGARDograph AG-AVT-039),
RTO/NATO, Brussels
,
Belgium
.
6.
Schwing
,
J.
,
Grimm
,
F.
, and
Sattelmayer
,
T.
,
2012
, “
A Model for Thermo-Acoustic Feedback of Transverse Acoustic Modes and Periodic Oscillations in Flame Positions in Cylindrical Flame Tubes
,”
ASME
Paper No. GT2012-68775.
7.
Hummel
,
T.
,
Temmler
,
C.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Reduced Order Modeling of Aeroacoustic Systems for Stability Analyses of Thermoacoustically Non-Compact Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
138
, p.
051502
.
8.
Hummel
,
T.
,
Schulze
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2015
, “
Reduced Order Modeling of Transversal and Non-Compact Combustion Dynamics
,”
22nd International Congress on Sound and Vibration
(
ICSV22
), Florence, Italy, July 12–16.
9.
Schuermans
,
B.
,
2003
, “
Modeling and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
10.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. GT2005-38688.
11.
Emmert
,
T.
,
Jaensch
,
S.
,
Sovardi
,
C.
, and
Polifke
,
W.
,
2014
, “
taX—A Flexible Tool for Low-Order Duct Acoustic Simulation in Time and Frequency Domain
,”
Forum Acusticum
, Krakow, Poland, Sept. 7–12.
12.
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Monkewitz
,
P.
,
2006
, “
Non-Linear Combustion Instabilities in Annular Gas-Turbine Combustors
,”
AIAA
Paper No. 2006-0549.
13.
Dowling
,
A.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.
14.
Berger
,
F.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors, Part I: Experimental Investigation of Local Flame Response
,”
ASME
Paper No. GT2016-57583.
15.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors, Part II: Modeling and Analysis
,”
ASME
Paper No. GT2016-57500.
16.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME
Paper No. GT2016-57913.
17.
Rao
,
P.
, and
Morris
,
P.
,
2006
, “
Use of Finite Element Methods in Frequency Domain Aeroacoustics
,”
AIAA J.
,
44
(
7
), pp.
1643
1652
.
18.
Gikadi
,
J.
,
2013
, “
Prediction of Acoustic Modes in Combustors Using Linearized Navier-Stokes Equations in Frequency Space
,”
Ph.D. thesis
, Lehrstuhl f. Thermodynamik, Technische Universität München, Garching, Germany.
19.
Gikadi
,
J.
,
Föller
,
S.
, and
Sattelmayer
,
T.
,
2014
, “
Impact of Turbulence on the Prediction of Linear Acoustic Interactions: Acoustic Response of a Turbulent Shear Layer
,”
J. Sound Vib.
,
333
(
24
), pp.
6548
6559
.
20.
Noiray
,
N.
,
Bothien
,
M. R.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.
21.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustion Chambers
,”
Int. J. Non-Linear Mech.
,
50
, pp.
152
163
.
22.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A
,
469
(
2151
).
23.
Bothien
,
M. R.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2014
, “
Analysis of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
061505
.
24.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal and Longitudinal Acoustic Modes
,”
ASME
Paper No. GT2013-95010.
25.
Bauerheim
,
M.
,
Cazalens
,
M.
, and
Poinsot
,
T.
,
2015
, “
A Theoretical Study of Mean Azimuthal Flow and Asymmetry Effects on Thermo-acoustic Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3219
3227
.
You do not currently have access to this content.