Ceramic turbines can reduce fuel consumption by increasing turbine inlet temperatures (TIT). The need for heat-resistant materials like ceramics is particularly acute for small turbomachines for which efficiencies are limited by the use of uncooled metal turbine as complex cooling schemes are impractical and costly. Efforts to introduce ceramics in the turbine rotor were made between the 1960s and the 1990s by gas turbines and automotive manufacturers in the U.S., Europe, and Japan. While significant progress was made, a suitable level of reliability still cannot be achieved as the brittleness of ceramics leads to crack propagation in the blades loaded in tension and catastrophic failure. The inside-out ceramic turbine (ICT) is a design alternative specific to ceramics that loads the blades in compression by using an outer, air-cooled composite rim that sustains the centrifugal loads. This paper provides an analytical model based on the Brayton cycle to compute the system-level performance of microturbines using an ICT. Loss submodels specific to ICT architectures are developed to account for: (1) composite rim drag, (2) composite rim cooling, (3) leakage through rotating seals, and (4) expansion heat losses. The thermodynamic core model is validated against three state-of-the-art, non-inside-out, microturbines. Based on a Monte Carlo simulation that takes into account the modeling uncertainties, the model predicts a cycle efficiency of 45±1% for a 240 kW ICT-based microturbine, leading to a predicted reduction in fuel consumption of 20% over current all-metal microturbines.
Skip Nav Destination
Article navigation
June 2017
Research-Article
System-Level Performance of Microturbines With an Inside-Out Ceramic Turbine
Nidal Kochrad,
Nidal Kochrad
Createk,
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nidal.Kochrad@USherbrooke.ca
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nidal.Kochrad@USherbrooke.ca
Search for other works by this author on:
Nicolas Courtois,
Nicolas Courtois
Createk,
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nicolas.Courtois@USherbrooke.ca
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nicolas.Courtois@USherbrooke.ca
Search for other works by this author on:
Miguel Charette,
Miguel Charette
Createk,
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Miguel.Charette@USherbrooke.ca
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Miguel.Charette@USherbrooke.ca
Search for other works by this author on:
Benoit Picard,
Benoit Picard
Ceragy Engines, Inc.,
Parc Innovation-ACELP,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: bpicard@ceragy.ca
Parc Innovation-ACELP,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: bpicard@ceragy.ca
Search for other works by this author on:
Alexandre Landry-Blais,
Alexandre Landry-Blais
Createk,
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Alexandre.Landry-Blais@USherbrooke.ca
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Alexandre.Landry-Blais@USherbrooke.ca
Search for other works by this author on:
David Rancourt,
David Rancourt
Aerospace Systems Design Laboratory (ASDL),
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: David.Rancourt@gatech.edu
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: David.Rancourt@gatech.edu
Search for other works by this author on:
Jean-Sébastien Plante,
Jean-Sébastien Plante
Faculté de génie,
Université de Sherbrooke,
2500 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Université de Sherbrooke,
2500 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Search for other works by this author on:
Mathieu Picard
Mathieu Picard
Faculté de génie,
Université de Sherbrooke,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Université de Sherbrooke,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Search for other works by this author on:
Nidal Kochrad
Createk,
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nidal.Kochrad@USherbrooke.ca
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nidal.Kochrad@USherbrooke.ca
Nicolas Courtois
Createk,
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nicolas.Courtois@USherbrooke.ca
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Nicolas.Courtois@USherbrooke.ca
Miguel Charette
Createk,
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Miguel.Charette@USherbrooke.ca
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Miguel.Charette@USherbrooke.ca
Benoit Picard
Ceragy Engines, Inc.,
Parc Innovation-ACELP,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: bpicard@ceragy.ca
Parc Innovation-ACELP,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: bpicard@ceragy.ca
Alexandre Landry-Blais
Createk,
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Alexandre.Landry-Blais@USherbrooke.ca
Institut Interdisciplinaire d'Innovation Technologique (3IT),
3000 boulevard de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Alexandre.Landry-Blais@USherbrooke.ca
David Rancourt
Aerospace Systems Design Laboratory (ASDL),
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: David.Rancourt@gatech.edu
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: David.Rancourt@gatech.edu
Jean-Sébastien Plante
Faculté de génie,
Université de Sherbrooke,
2500 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Université de Sherbrooke,
2500 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Mathieu Picard
Faculté de génie,
Université de Sherbrooke,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Université de Sherbrooke,
3000 boulevard de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
1Corresponding author.
Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received December 6, 2016; final manuscript received December 13, 2016; published online February 1, 2017. Editor: David Wisler.
J. Eng. Gas Turbines Power. Jun 2017, 139(6): 062702 (10 pages)
Published Online: February 1, 2017
Article history
Received:
December 6, 2016
Revised:
December 13, 2016
Citation
Kochrad, N., Courtois, N., Charette, M., Picard, B., Landry-Blais, A., Rancourt, D., Plante, J., and Picard, M. (February 1, 2017). "System-Level Performance of Microturbines With an Inside-Out Ceramic Turbine." ASME. J. Eng. Gas Turbines Power. June 2017; 139(6): 062702. https://doi.org/10.1115/1.4035648
Download citation file:
Get Email Alerts
Shape Optimization of an Industrial Aeroengine Combustor to reduce Thermoacoustic Instability
J. Eng. Gas Turbines Power
Dynamic Response of A Pivot-Mounted Squeeze Film Damper: Measurements and Predictions
J. Eng. Gas Turbines Power
Review of The Impact Of Hydrogen-Containing Fuels On Gas Turbine Hot-Section Materials
J. Eng. Gas Turbines Power
Effects of Lattice Orientation Angle On Tpms-Based Transpiration Cooling
J. Eng. Gas Turbines Power
Related Articles
An Investigation of Turbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part II: CFD Simulations
J. Turbomach (October,2011)
Design Principles and Measured Performance of Multistage Radial Flow Microturbomachinery at Low Reynolds Numbers
J. Fluids Eng (November,2008)
Integrated Optimization Design for a Radial Turbine Wheel of a 100 kW-Class Microturbine
J. Eng. Gas Turbines Power (January,2012)
Modeling the Air-Cooled Gas Turbine: Part 1—General Thermodynamics
J. Turbomach (April,2002)
Related Proceedings Papers
Related Chapters
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential