We present an experimental study on the nonlinear dynamics of combustion instability in a lean premixed gas-turbine model combustor with a swirl-stabilized turbulent flame. Intermittent combustion oscillations switching irregularly back and forth between burst and pseudo-periodic oscillations exhibit the deterministic nature of chaos. This is clearly demonstrated by considering two nonlinear forecasting methods: an extended version (Gotoda et al., 2015, “Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation,” Int. J. Bifurcation Chaos, 25, p. 1530015) of the Sugihara and May algorithm (Sugihara and May, 1990, “Nonlinear Forecasting as a Way of Distinguishing Chaos From Measurement Error in Time Series,” Nature, 344, pp. 734–741) as a local predictor, and a generalized radial basis function (GRBF) network as a global predictor (Gotoda et al., 2012, “Characterization of Complexities in Combustion Instability in a Lean Premixed Gas-Turbine Model Combustor,” Chaos, 22, p. 043128; Gotoda et al., 2016 (unpublished)). The former enables us to extract the short-term predictability and long-term unpredictability of chaos, while the latter can produce surrogate data to test for determinism by a free-running approach. The permutation entropy based on a symbolic sequence approach is estimated for the surrogate data to test for determinism and is also used as an online detector to prevent lean blowout.

References

1.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Wahi
,
P.
, and
Sujith
,
R. I.
,
2012
, “
Route to Chaos for Combustion Instability in Ducted Laminar Premixed Flames
,”
Chaos
,
22
(
2
), p.
023129
.
2.
Kashinath
,
K.
,
Waugh
,
I. C.
, and
Juniper
,
M. P.
,
2014
, “
Intermittency Route to Thermoacoustic Instability in Turbulent Combustors
,”
J. Fluid Mech.
,
761
, pp.
399
430
.
3.
Kabiraj
,
L.
, and
Sujith
,
R. I.
,
2012
, “
Nonlinear Self-Excited Thermoacoustic Oscillations: Intermittency and Flame Blowout
,”
J. Fluid Mech.
,
713
, pp.
376
397
.
4.
Nair
,
V.
,
Thampi
,
G.
,
Karuppusamy
,
S.
,
Gopalan
,
S.
, and
Sujith
,
R. I.
,
2013
, “
Loss of Chaos in Combustion Noise as a Precursor of Impending Combustion Instability
,”
Int. J. Spray Combust. Dyn.
,
5
(
4
), pp.
273
290
.
5.
Nair
,
V.
, and
Sujith
,
R. I.
,
2013
, “
Identifying Homoclinic Orbits in the Dynamics of Intermittent Signals Through Recurrence Quantification
,”
Chaos
,
23
(
3
), p.
033136
.
6.
Nair
,
V.
,
Thampi
,
G.
, and
Sujith
,
R. I.
,
2015
, “
Intermittency Route to Thermoacoustic Instability in Turbulent Combustors
,”
J. Fluid Mech.
,
756
, pp.
470
487
.
7.
Nair
,
V.
, and
Sujith
,
R. I.
,
2014
, “
Multifractality in Combustion Noise: Predicting an Impending Combustion Instability
,”
J. Fluid Mech.
,
747
, pp.
635
655
.
8.
Balusamy
,
S.
,
Li
,
L. K. B.
,
Han
,
Z.
,
Juniper
,
M. P.
, and
Hochgreb
,
S.
,
2015
, “
Nonlinear Dynamics of a Self-Excited Thermoacoustic System Subjected to Acoustic Forcing
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3229
3236
.
9.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Karimi
,
N.
,
Sailor
,
A.
,
Mastorakos
,
E.
,
Dowling
,
A. P.
, and
Paschereit
,
C. O.
,
2015
, “
Chaos in an Imperfectly Premixed Model Combustor
,”
Chaos
,
25
(
2
), p.
023101
.
10.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Nawroth
,
H.
, and
Paschereit
,
C. O.
,
2015
, “
Recurrence Analysis of Combustion Noise
,”
AIAA J.
,
53
(
5
), pp.
1199
1210
.
11.
Gotoda
,
H.
,
Amano
,
M.
,
Miyano
,
T.
,
Ikawa
,
T.
,
Maki
,
K.
, and
Tachibana
,
S.
,
2012
, “
Characterization of Complexities in Combustion Instability in a Lean Premixed Gas-Turbine Model Combustor
,”
Chaos
,
22
(
4
), p.
043128
.
12.
Gotoda
,
H.
,
Nikimoto
,
H.
,
Miyano
,
T.
, and
Tachibana
,
S.
,
2011
, “
Dynamic Properties of Combustion Instability in a Lean Premixed Gas-Turbine Combustor
,”
Chaos
,
21
(
1
), p.
013124
.
13.
Gotoda
,
H.
,
Okuno
,
Y.
,
Hayashi
,
K.
, and
Tachibana
,
S.
,
2015
, “
Characterization of Degeneration Process in Combustion Instability Based on Dynamical Systems Theory
,”
Phys. Rev. E
,
92
(
5
), p.
052906
.
14.
Gotoda
,
H.
,
Shinoda
,
Y.
,
Kobayashi
,
M.
,
Okuno
,
Y.
, and
Tachibana
,
S.
,
2014
, “
Detection and Control of Combustion Instability Based on the Concept of Dynamical System Theory
,”
Phys. Rev. E
,
89
(
2
), p.
022910
.
15.
Gotoda
,
H.
,
Pradas
,
M.
, and
Kalliadasis
,
S.
,
2015
, “
Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation
,”
Int. J. Bifurcation Chaos
,
25
(
5
), p.
1530015
.
16.
Sugihara
,
G.
, and
May
,
R.
,
1990
, “
Nonlinear Forecasting as a Way of Distinguishing Chaos From Measurement Error in Time Series
,”
Nature
,
344
(
6268
), pp.
734
741
.
17.
Gotoda
,
H.
,
Hayashi
,
K.
,
Kinugawa
,
H.
, and
Tachibana
,
S.
,
2016
(unpublished).
18.
Takens
,
F.
,
1981
, “
Detecting Strange Attractors in Turbulence
,”
Dynamical Systems and Turbulence, Warwick 1980
, Vol.
898
,
Springer
,
Berlin
, p.
366
.
19.
Kantz
,
H.
, and
Schreiber
,
T.
,
2004
,
Nonlinear Time Series Analysis
,
Cambridge University Press
,
Cambridge, UK
.
20.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), pp.
1134
1140
.
21.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D. I.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.
22.
Gotoda
,
H.
,
Ikawa
,
T.
,
Maki
,
K.
, and
Miyano
,
T.
,
2012
, “
Short-Term Prediction of Dynamical Behavior of Flame Front Instability Induced by Radiative Heat Loss
,”
Chaos
,
22
(
3
), p.
033106
.
23.
Gotoda
,
H.
,
Takeuchi
,
R.
,
Okuno
,
Y.
, and
Miyano
,
T.
,
2013
, “
Low-Dimensional Dynamical System for Rayleigh–Benard Convection Subjected to Magnetic Field
,”
J. Appl. Phys.
,
113
(
12
), p.
124902
.
24.
Bandt
,
C.
, and
Pompe
,
B.
,
2002
, “
Permutation Entropy: A Natural Complexity Measure for Time Series
,”
Phys. Rev. Lett.
,
88
(
17
), p.
174102
.
25.
Rosso
,
O. A.
,
Larrondo
,
H. A.
,
Martin
,
M. T.
,
Plastino
,
A.
, and
Fuentes
,
M. A.
,
2007
, “
Distinguishing Noise From Chaos
,”
Phys. Rev. Lett.
,
99
(
15
), p.
154102
.
26.
Okuno
,
Y.
,
Small
,
M.
, and
Gotoda
,
H.
,
2015
, “
Dynamics of a Self-Excited Thermoacoustic Instability in a Combustion System: Pseudo-Periodic and High-Dimensional Nature
,”
Chaos
,
25
(
4
), p.
043107
.
27.
Domen
,
S.
,
Gotoda
,
H.
,
Kuriyama
,
T.
,
Okuno
,
Y.
, and
Tachibana
,
S.
,
2015
, “
Detection and Prevention of Blowout in a Lean Premixed Gas-Turbine Model Combustor Using the Concept of Dynamical System Theory
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3245
3253
.
28.
Li
,
H.
,
Zhou
,
X.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2007
, “
Active Control of Lean Blowout in a Swirl-Stabilized Combustor Using a Tunable Diode Laser
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3215
3223
.
You do not currently have access to this content.