In combustor design for aero-engines, engineers face multiple opposing objectives with strict constraints. The trend toward lean direct injection (LDI) combustors suggests a growing emphasis on injector design to balance these objectives. Decades of empirical and analytical work have produced low-order methods, including semi-empirical and semi-analytical correlations and models of combustors and their components, but detailed modeling of injector and combustor behavior requires computational fluid dynamics (CFD). In this study, an application of low-order methods and published guidelines yielded generic injector and combustor geometries, as well as CFD boundary conditions of parameterized injector designs. Moreover, semi-empirical correlations combined with a numerical spray combustion solver provided injector design evaluations in terms of pattern factor, thermoacoustic performance, and certain emissions. Automation and parallel coordinate visualization enabled exploration of the dual-swirler airblast injector design space, which is often neglected in published combustor design studies.

References

1.
Lewis
,
J. S.
, and
Niedzwiecki
,
R. W.
,
1999
, “
Aircraft Technology and Its Relation to Emissions
,”
Aviation and the Global Atmosphere
,
J. E.
Penner
,
D. H.
Lister
,
D. J.
Griggs
,
D. J.
Dokken
, and
M.
McFarland
, eds.,
Cambridge University Press
,
Cambridge, UK
, Chap. 7.
2.
Sturgess
,
G. J.
,
Zelina
,
J.
,
Shouse
,
D. T.
, and
Roquemore
,
W. M.
,
2005
, “
Emissions Reduction Technologies for Military Gas Turbine Engines
,”
J. Propul. Power
,
21
(
2
), pp.
193
217
.
3.
Rolls-Royce plc
,
2005
,
The Jet Engine
, 6th ed.,
Rolls-Royce plc
,
London
.
4.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
Taylor and Francis
,
Philadelphia, PA
.
5.
Derr
,
W. S.
, and
Mellor
,
A. M.
,
1990
, “
Recent Developments
,”
Design of Modern Turbine Combustors
,
A. M.
Mellor
, ed.,
Academic
,
London
, Chap. 5.
6.
Mafra
,
M. R.
,
Fassani
,
F. L.
,
Zanoelo
,
E. F.
, and
Bizzo
,
W. A.
,
2010
, “
Influence of Swirl Number and Fuel Equivalence Ratio on NO Emission in an Experimental LPG-Fired Chamber
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
928
934
.
7.
Nakamura
,
S.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2008
, “
The Effect of Liquid-Fuel Preparation on Gas Turbine Emissions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021506
.
8.
Beck
,
C. H.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2008
, “
Investigation of the Effect of Incomplete Droplet Prevaporization on NOx Emissions in LDI Combustion Systems
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051504
.
9.
Linck
,
M. B.
, and
Gupta
,
A. K.
,
2009
, “
Twin-Fluid Atomization and Novel Lifted Swirl-Stabilized Spray Flames
,”
J. Propul. Power
,
25
(
2
), pp.
344
357
.
10.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1991
, “
Three-Dimensional Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
7
(
3
), pp.
445
451
.
11.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1990
, “
Three-Dimensional Combustor Performance Validation With High-Density Fuels
,”
J. Propul. Power
,
6
(
5
), pp.
660
667
.
12.
Fuligno
,
L.
,
Micheli
,
D.
, and
Poloni
,
C.
,
2009
, “
An Integrated Approach for Optimal Design of Micro Gas Turbine Combustors
,”
J. Therm. Sci.
,
18
(
2
), pp.
173
184
.
13.
Wyse
,
S. G.
,
2007
, “
Optimisation of Gas Turbine Combustors
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
14.
Dudebout
,
R.
,
Reynolds
,
B.
, and
Molla-Hosseini
,
K.
,
2004
, “
Integrated Process for CFD Modeling and Optimization of Gas Turbine Combustors
,”
ASME
Paper No. GT2004-54011.
15.
Zarnescu
,
V.
, and
Pisupati
,
S. V.
,
2002
, “
An Integrative Approach for Combustor Design Using CFD Methods
,”
Energy Fuels
,
16
(
3
), pp.
622
633
.
16.
Koutsenko
, I
. G.
,
Onegin
,
S. F.
, and
Sipatov
,
A. M.
,
2004
, “
Application of CFD-Based Analysis Technique for Design and Optimization of Gas Turbine Combustors
,”
ASME
Paper No. GT2004-53398.
17.
Gordon
,
R.
, and
Levy
,
Y.
,
2005
, “
Optimization of Wall Cooling in Gas Turbine Combustor Through Three-Dimensional Numerical Simulation
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
704
723
.
18.
Su
,
K.
, and
Zhou
,
C. Q.
,
1999
, “
Numerical Study of Spray Parametric Effects on Gas Turbine Combustion Performance
,”
ASME International Mechanical Engineering Congress and Exhibition
, Nashville, TN, Nov. 14–19, Vol.
364-2
, pp.
345
354
.
19.
Su
,
K.
, and
Zhou
,
C. Q.
,
2000
, “
Parametric Studies of Gas Turbine Combustion NOx Emissions Using KIVA With a Reduced Mechanism
,” ASME International Mechanical Engineering Congress and Exposition (IMechE), Orlando, FL, Nov. 5–10, FACT-Vol. 23/HTD-Vol. 367.
20.
Duchaine
,
F.
,
Morel
,
T.
, and
Gicquel
,
L. Y. M.
,
2009
, “
Computational-Fluid-Dynamics-Based Kriging Optimization Tool for Aeronautical Combustion Chambers
,”
AIAA J.
,
47
(
3
), pp.
631
645
.
21.
Rolls-Royce
,
2010
, “
Trent 1000: Optimised for the Boeing 787 DreamlinerTM Family
,”
Rolls-Royce Energy Systems
,
Mount Vernon, OH
.
22.
Engine Alliance
,
2011
, Specifications: GP7270, Engine Alliance LLC, East Hartford, CT.
23.
ICAO
,
2011
, “
Committee on Aviation Environmental Protection (CAEP)
,” International Civil Aviation Organization, Montreal, Canada.
24.
Shakariyants
,
S. A.
,
Buijtenen
,
J. P. V.
, and
Visser
,
W. P. J.
,
2004
, “
Generic Geometry Definition of the Aircraft Engine Combustion Chamber
,”
ASME
Paper No. GT2004-53522.
25.
Mattingly
,
J. D.
,
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
,
Aircraft Engine Design
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
26.
Mattingly
,
J. D.
,
2006
,
Elements of Propulsion: Gas Turbines and Rockets
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
27.
Lefebvre
,
A. H.
, “
Fuel Effects on Gas Turbine Combustion—Ignition, Stability, and Combustion Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
24
37
.
28.
Comer
,
A. L.
, and
Cant
,
R. S.
,
2012
, “
Towards the Automated Optimisation of Liquid Fuel Injection for Gas Turbine Engines
,”
ASME
Paper No. GT2012-68286.
29.
Karrholm
,
F. P.
,
2008
, “
Numerical Modelling of Diesel Spray Injection, Turbulence Interaction and Combustion
,” Ph.D. thesis, Chalmers University of Technology, Gothenberg, Sweden.
30.
Rizk
,
N. K.
, and
Lefebvre
,
A. H.
,
1980
, “
The Influence of Liquid Film Thickness on Airblast Atomization
,”
ASME J. Eng. Power
,
102
(
3
), pp.
706
710
.
31.
Arai
,
T.
, and
Hashimoto
,
H.
,
1985
, “
Disintegration of a Thin Liquid Sheet in a Cocurrent Gas Stream
,”
3rd International Conference on Liquid Atomization and Spray Systems
, London, July 8–10, Vol.
V1B
,
ICLASS
.
32.
Zheng
,
Q. P.
,
Jasuja
,
A. K.
, and
Lefebvre
,
A. H.
,
1997
, “
Structure of Airblast Sprays Under High Ambient Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
119
(
3
), pp.
512
518
.
33.
Chin
,
J. S.
,
Rizk
,
N. K.
, and
Razdan
,
M. K.
,
2000
, “
Effect of Inner and Outer Airflow Characteristics on High Liquid Pressure Prefilming Airblast Atomization
,”
J. Propul. Power
,
16
(
2
), pp.
297
301
.
34.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
35.
Iannetti
,
A. C.
,
Liu
,
N.-S.
, and
Davoudzadeh
,
F.
,
2008
, “
The Effect of Spray Initial Conditions on Heat Release and Emissions in LDI CFD Calculations
,” NASA Glenn Research Center, Cleveland, OH, NASA Report No. NASA/TM—2008-214522,
36.
Nordin
,
N.
,
2001
, “
Complex Chemistry Modeling of Diesel Spray Combustion
,” Ph.D. thesis, Chalmers University of Technology, Gothenberg, Sweden.
37.
Cohen
,
J. M.
,
Proscia
,
W.
, and
DeLaat
,
J.
,
2005
, “
Characterization and Control of Aeroengine Combustion Instability: Pratt & Whitney and NASA Experience
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
(Progress in Astronautics and Aeronautics, Vol. 210),
T. C.
Lieuwen
and
V.
Yang
, eds.,
AIAA
,
Reston, VA
, Chap. 6.
38.
Beer
,
J. M.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
,
Applied Science
,
London
.
39.
Rizk
,
N. K.
, and
Mongia
,
H. C.
,
1992
, “
Calculation Approach Validation for Airblast Atomizers
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
386
394
.
40.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
,
Chichester, UK
.
41.
MDG Ltd
., “ParallAX User's Manual,” MDG Ltd., Perth, UK.
42.
Inselberg
,
A.
,
2009
,
Parallel Coordinates: Visual Multidimensional Geometry and Its Applications
,
Springer
,
New York
.
43.
Kipouros
,
T.
,
Inselberg
,
A.
,
Parks
,
G. T.
, and
Savill
,
A. M.
,
2013
, “
Parallel Coordinates in Computational Engineering Design
,”
AIAA
Paper No. 2013-1750.
44.
Kipouros
,
T.
,
Mleczko
,
M.
, and
Savill
,
A. M.
,
2008
, “
Use of Parallel-Coordinates for Post-Analyses of Multi-Objective Aerodynamic Optimisation in Turbomachinery
,”
AIAA
Paper No. 2008-2138.
45.
Inselberg
,
A.
, and
Dimsdale
,
B.
,
1994
, “
Multidimensional Lines I: Representation
,”
SIAM J. Appl. Math.
,
54
(
2
), pp.
559
577
.
46.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
You do not currently have access to this content.