Experiments in cold and reactive conditions carried out in linear arrays of injectors indicate that the flows established by neighboring injectors exhibit alternating patterns if the distance between two injectors is too small (see, for example, ASME-GT2013-94280, GT2014-25094, and GT2015-42509). This issue is investigated in this article by making use of a recently developed annular combustion chamber (ACC). This device designated as MICCA is equipped with multiple swirling injectors and its side walls are made of quartz providing full optical access to the flame region, thus allowing detailed studies of the combustion region structure and dynamics. Experiments reported in this article rely on direct observations of the flame region through light emission imaging using two standard cameras and an intensified high-speed CMOS camera. The data gathered indicate that interactions between successive injectors give rise to patterns of flames which exhibit an alternate geometry where one flame has a relatively low expansion angle while the next spreads sideways. This pattern is then repeated with a period which corresponds to twice the injector spacing. Such arrangements arise when the angle of the cup used as the end-piece of each injector exceeds a critical value. The effects of mass flow rate, equivalence ratio, and injector offset are also investigated. It is shown that the angle which defines the cup opening is the main control parameter. It is also found that when this angle exceeds a certain value and when the laminar burning velocity is fast enough, the flame pattern switches in an unsteady manner between two possible configurations. It is shown that these alternating flame patterns lead to alternating heat release rate distributions and inhomogeneous heat transfer to the chamber walls featuring a helicoidal pattern. Conditions leading to alternating flame patterns are finally discussed by making use of a recent flow regime diagram.

References

1.
Lefebvre
,
A.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
,
2002
, “
Thermoacoustic Stability Chart for High-Intensity Gas Turbine Combustion Systems
,”
Combust. Sci. Technol.
,
174
(
7
), pp.
99
128
.
3.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.
4.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
(Progress in Astronautical and Aeronautics, Vol. 210), American Institute of Aeronautics and Astronautics, Reston, VA, p.
657
.
5.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2012
, “
Cinematographic OH-PLIF Measurements of Two Interacting Turbulent Premixed Flames With and Without Acoustic Forcing
,”
Combust. Flame
,
159
(
3
), pp.
1109
1126
.
6.
Kao
,
Y.-H.
,
Denton
,
M.
,
Wang
,
X.
,
Jeng
,
S.-M.
, and
Lai
,
M.-C.
,
2015
, “
Experimental Spray Structure and Combustion of a Linearly-Arranged 5-Swirler Array
,”
ASME
Paper No. GT2015-42509.
7.
Kao
,
Y.-H.
,
Tambe
,
S.
, and
Jeng
,
S.-M.
,
2013
, “
Aerodynamics of Linearly Arranged Rad-Rad Swirlers: Effect of Numbers of Swirlers and Alignment
,”
ASME
Paper No. GT2013-94280.
8.
Kao
,
Y.-H.
,
Tambe
,
S.
, and
Jeng
,
S.-M.
,
2014
, “
Aerodynamics Study of a Linearly-Arranged 5-Swirler Array
,”
ASME
Paper No. GT2014-25094.
9.
Rojatkar
,
P.
,
Kao
,
Y.-H.
,
Jog
,
M. A.
, and
Jeng
,
S.-M.
,
2014
, “
Effect of Swirler Offset on Aerodynamics of Multiswirler Arrays
,”
ASME
Paper No. GT2014-26236.
10.
Cordier
,
M.
,
Vandel
,
A.
,
Cabot
,
G.
,
Renou
,
B.
, and
Boukhalfa
,
A.
,
2013
, “
Laser-Induced Spark Ignition of Premixed Confined Swirled Flames
,”
Combust. Sci. Technol.
,
185
(
3
), pp.
379
407
.
11.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.
12.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.
13.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.
14.
Wang
,
H.
,
McDonnel
,
V.
, and
Samuelsen
,
S.
,
1995
, “
Influence of Hardware Design on the Flow Field Structures and the Pattern of Droplet Dispersion—Part 1: Mean Quantities
,”
ASME J. Eng. Gas Turbines Power
,
117
(
2
), pp.
282
289
.
15.
Fanaca
,
D.
,
Alemela
,
P. R.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2010
, “
Comparison of the Flow Field of a Swirl Stabilized Premixed Burner in a Annular and a Single Burner Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
071502
.
16.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.
17.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041502
.
18.
Hermeth
,
S.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Anisimov
,
V.
,
Cirigliano
,
C.
, and
Poinsot
,
T.
,
2014
, “
Bistable Swirled Flames and Influence on Flame Transfer Functions
,”
Combust. Flame
,
161
(
1
), pp.
184
196
.
19.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(
9
), pp.
1729
1742
.
20.
Bauerheim
,
M.
,
Staffelbach
,
G.
,
Worth
,
N. A.
,
Dawson
,
J. R.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2015
, “
Sensitivity of LES-Based Harmonic Flame Response Model for Turbulent Swirled Flames and Impact on the Stability of Azimuthal Modes
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3355
3363
.
21.
Moeck
,
J. P.
,
Paul
,
M.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Instabilities in an Annular Rijke Tube
,”
ASME
Paper No. GT2010-23577.
22.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.
23.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.
, and
Moeck
,
J.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.
24.
Hurle
, I
. R.
,
Price
,
R. B.
,
Sugden
,
T. M.
, and
Thomas
,
A.
,
1968
, “
Sound Emission From Open Turbulent Premixed Flames
,”
Proc. R. Soc. A
,
303
(
1475
), pp.
409
427
.
25.
Price
,
R. B.
,
Hurle
, I
. R.
, and
Sugden
,
T. M.
,
1969
, “
Optical Studies of the Generation of Noise in Turbulent Flames
,”
Symp. (Int.) Combust.
,
12
(
1
), pp.
1093
1102
.
26.
Garcia-Armingol
,
T.
,
Hardalupas
,
Y.
,
Taylor
,
A.
, and
Ballester
,
J.
,
2014
, “
Effect of Local Flame Properties on Chemiluminescence-Based Stoichiometry Measurement
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
93
103
.
27.
Fu
,
Y.
,
Cai
,
J.
,
Jeng
,
S.-M.
, and
Mongia
,
H.
,
2005
, “
Confinement Effects on the Swirlings Flow of a Counter-Rotating Swirl Cup
,”
ASME
Paper No. GT2005-68622.
You do not currently have access to this content.