A nonlinear four state-three input mean value engine model (MVEM), incorporating the important turbocharger dynamics, is used to study optimal control of a diesel–electric powertrain during transients. The optimization is conducted for the two criteria, minimum time and fuel, where both engine speed and engine power are considered free variables in the optimization. First, steps from idle to a target power are studied and for steps to higher powers the controls for both criteria follow a similar structure, dictated by the maximum torque line and the smoke-limiter. The end operating point, and how it is approached is, however, different. Then, the power transients are extended to driving missions, defined as, that a certain power has to be met as well as a certain energy has to be produced. This is done both with fixed output profiles and with the output power being a free variable. The time optimal control follows the fixed output profile even when the output power is free. These solutions are found to be almost fuel optimal despite being substantially faster than the minimum fuel solution with variable output power. The discussed control strategies are also seen to hold for sequences of power and energy steps.

References

1.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2009
,
Diesel Engine Transient Operation—Principles of Operation and Simulation Analysis
,
Springer
, Berlin.
2.
Kim
,
S.-M.
, and
Sul
,
S.-K.
,
2006
, “
Control of Rubber Tyred Gantry Crane With Energy Storage Based on Supercapacitor Bank
,”
IEEE Trans. Power Electron.
,
21
(
5
), pp.
1420
1427
.10.1109/TPEL.2006.880260
3.
Cheng
,
X.
,
Sun
,
F.
, and
Ouyang
,
M.
,
2006
, “
Novel Load Following Control of an Auxiliary Power Unit
,”
6th World Congress on Intelligent Control and Automation
, Dalian, China, June 21–23.
4.
Hill
,
W. A.
,
Creelman
,
G.
, and
Mischke
,
L.
,
1992
, “
Control Strategy for an Icebreaker Propulsion System
,”
IEEE Trans. Ind. Appl.
,
28
(
4
), pp.
887
892
.10.1109/28.148456
5.
Kwon
,
T.-S.
,
Lee
,
S.-W.
,
Sul
,
S.-K.
,
Park
,
C.-G.
,
Kim
,
N.-I.
,
Il Kang
,
B.
, and
Hong
,
M.-S.
,
2010
, “
Power Control Algorithm for Hybrid Excavator With Supercapacitor
,”
IEEE Trans. Ind. Appl.
,
46
(
4
), pp.
1447
1455
.10.1109/TIA.2010.2049815
6.
Gautam
,
A.
, and
Agarwal
,
A. K.
,
2013
, “
Comparative Evaluation of Turbochargers for High Horsepower Diesel-Electric Locomotives
,”
SAE
Technical Paper No. 2013-01-0930.10.4271/2013-01-0930
7.
Yoo
,
H.
,
Cho
,
B.-G.
,
Sul
,
S.-K.
,
Kim
,
S.-M.
, and
Park
,
Y.
,
2009
, “
A Power Flow Control Strategy for Optimal Fuel Efficiency of a Variable Speed Engine-Generator Based Series Hybrid Electric Vehicle
,”
IEEE Energy Conversion Congress and Exposition
, (
ECCE'09
), San Jose, CA, Sept. 20–24, pp.
443
450
.10.1109/ECCE.2009.5316491
8.
Cairano
,
S. D.
,
Liang
,
W.
,
Kolmanovsky
,
I. V.
,
Kuang
,
M. L.
, and
Phillips
,
A. M.
,
2013
, “
Power Smoothing Energy Management and Its Application to a Series Hybrid Powertrain
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2091
2103
.10.1109/TCST.2012.2218656
9.
Halme
,
J.
, and
Suomela
,
J.
,
2012
, “
Optimal Efficiency Based Gen-Set Control for Series Hybrid Work Machine
,”
8th IEEE Vehicle Power and Propulsion Conference
(
VPPC 2012
), Seoul, Korea, Oct. 9–12.10.1109/VPPC.2012.6422731
10.
Sezer
,
V.
,
Gokasan
,
M.
, and
Bogosyan
,
S.
,
2011
, “
A Novel ECMS and Combined Cost Map Approach for High-Efficiency Series Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
(
8
), pp.
3557
3570
.10.1109/TVT.2011.2166981
11.
Yan
,
F.
,
Wang
,
J.
, and
Huang
,
K.
,
2012
, “
Hybrid Electric Vehicle Model Predictive Control Torque-Split Strategy Incorporating Engine Transient Characteristics
,”
IEEE Trans. Veh. Technol.
,
61
(
6
), pp.
2458
2467
.10.1109/TVT.2012.2197767
12.
Nino-Baron
,
C. E.
,
Tariq
,
A. R.
,
Zhu
,
G.
, and
Strangas
,
E. G.
,
2011
, “
Trajectory Optimization for the Engine-Generator Operation of a Series Hybrid Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
60
(
6
), pp.
2438
2447
.10.1109/TVT.2011.2141695
13.
He
,
B.
, and
Yang
,
M.
,
2005
, “
Optimisation-Based Energy Management of Series Hybrid Vehicles Considering Transient Behaviour
,”
Int. J. Altern. Propul.
,
1
(
1
), pp.
79
96
.10.1504/IJAP.2006.010759
14.
Benz
,
M.
,
Hehn
,
M.
,
Onder
,
C. H.
, and
Guzzella
,
L.
,
2011
, “
Model-Based Actuator Trajectories Optimization for a Diesel Engine Using a Direct Method
,”
ASME J. Eng. Gas. Turbines Power
,
133
(
3
), p. 032806.10.1115/1.4001807
15.
Kyrtatos
,
N. P.
,
Tzanos
,
E. I.
, and
Papadopoulos
,
C. I.
,
2003
, “
Diesel Engine Control Optimization for Transient Operation With Lean/Rich Switches
,”
Int. J. Eng. Res.
,
4
(3), pp. 219–231.10.1243/146808703322223333
16.
Nilsson
,
T.
,
Fröberg
,
A.
, and
Åslund
,
J.
,
2012
, “
Optimal Operation of a Turbocharged Diesel Engine During Transients
,”
SAE
Technical Paper No. 2012-01-0711.10.4271/2012-01-0711
17.
Sivertsson
,
M.
, and
Eriksson
,
L.
,
2012
, “
Optimal Step Responses in Diesel-Electric Systems
,”
13th Mechatronics Forum International Conference
. Mechatronics'12), Linz, Austria, Sept. 17–19.
18.
Sivertsson
,
M.
, and
Eriksson
,
L.
,
2012
, “
Time and Fuel Optimal Power Response of a Diesel-Electric Powertrain
,” IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling (E-COSM'12), Paris, France, Oct. 23–25.
19.
Wahlström
,
J.
, and
Eriksson
,
L.
,
2011
, “
Modelling Diesel Engines With a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics
,”
Proc. Inst. Mech. Eng., D
,
225
(
7
), pp.
960
986
.10.1177/0954407011398177
20.
Eriksson
,
L.
,
2007
, “
Modeling and Control of Turbocharged SI and DI Engines
,”
Oil Gas Sci. Technol. - Rev. IFP
,
62
(
4
), pp.
523
538
.10.2516/ogst:2007042
21.
Houska
,
B.
,
Ferreau
,
H. J.
, and
Diehl
,
M.
,
2011
, “
ACADO Toolkit—An Open Source Framework for Automatic Control and Dynamic Optimization
,”
Optim. Control Appl. Methods
,
32
(
3
), pp.
298
312
.10.1002/oca.939
22.
Tomlab
,
2012
, Propt—matlab Optimal Control Software, Tomlab Optimization Inc., Seattle, WA, see http://www.tomdyn.com/
23.
Sivertsson
,
M.
, and
Eriksson
,
L.
,
2013
, “
Optimal Transient Control and Effects of a Small Energy Storage for a Diesel-Electric Powertrain
,”
7th IFAC Symposium on Advances in Automotive Control
(
AAC'13
), Tokyo, Japan, Sept. 4–7.10.3182/20130904-4-JP-2042.00091
You do not currently have access to this content.