A major thrust in combustion research is the development of chemical kinetic models for computational analysis of various combustion processes. Significant deviations can be seen when comparing predictions of these models against experimentally determined combustion properties over a wide range of operating conditions and mixture strengths. However, these deviations vary from one model to another. It would be insightful in such circumstances to elucidate the species and subchemistry models which lead to the varying prediction ability in various models. In this work, we apply the alternate species elimination (ASE) method to selected mechanisms in order to analyze their predictive ability with respect to propane and syngas combustion. ASE is applied to a homogeneous reactor undergoing ignition. The ranked species of each model are compared based on their normalized changes. We further provide skeletal versions of the various models for propane and syngas combustion analysis. It is observed that this approach provides an easy way to determine the chemical species which are central to the predictive performance of a model in their order of importance. It also provides a direct way to compare the relative importance of chemical species in the models under consideration. Further development and in-depth analysis could provide more information and guidance for model improvement.

References

1.
Lam
,
S.
, and
Goussis
,
D.
,
1989
, “
Understanding Complex Chemical Kinetics With Computational Singular Perturbation
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
931
941
.10.1016/S0082-0784(89)80102-X
2.
Prager
,
J.
,
Najm
,
H.
,
Valorani
,
M.
, and
Goussis
,
D.
,
2011
, “
Structure of n-Heptane/Air Triple Flames in Partially-Premixed Mixing Layers
,”
Combust. Flame
,
158
(11), pp.
2128
2144
.10.1016/j.combustflame.2011.03.017
3.
Maas
,
U.
, and
Pope
,
S.
,
1992
, “
Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space
,”
Combust. Flame
,
88
(
3–4
), pp.
239
264
.10.1016/0010-2180(92)90034-M
4.
Lu
,
T. F.
,
Yoo
,
C. S.
,
Chen
,
J. H.
, and
Law
,
C. K.
,
2010
, “
Three-Dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow: A Chemical Explosive Mode Analysis
,”
J. Fluid Mech.
,
652
, pp.
45
64
.10.1017/S002211201000039X
5.
Rolland
,
S.
, and
Simmie
,
J.
,
2004
, “
The Comparison of Detailed Chemical Kinetic Mechanisms: Application to the Combustion of Methane
,”
Int. J. Chem. Kinet.
,
36
(
9
), pp.
467
471
.10.1002/kin.20019
6.
Rolland
,
S.
, and
Simmie
,
J.
,
2005
, “
The Comparison of Detailed Chemical Kinetic Mechanisms; Forward Versus Reverse Rates With Chemrev
,”
Int. J. Chem. Kinet.
,
37
(
3
), pp.
119
125
.10.1002/kin.20049
7.
Simmie
,
J.
,
Rolland
,
S.
, and
Ryder
,
E.
,
2005
, “
Automatic Comparison of Thermodynamic Data for Species in Detailed Chemical Kinetic Modeling
,”
Int. J. Chem. Kinet.
,
37
(
6
), pp.
341
345
.10.1002/kin.20085
8.
Ratkiewicz
,
A.
, and
Truong
,
T.
,
2012
, “
A Canonical Form of the Complex Reaction Mechanism
,”
Energy
,
43
(
1
), pp.
64
72
.10.1016/j.energy.2012.02.029
9.
Akih-Kumgeh
,
B.
, and
Bergthorson
,
J.
,
2013
, “
Skeletal Chemical Kinetic Mechanisms for Syngas, Methyl Butanoate, n-Heptane and n-Decane
,”
Energy Fuels
,
27
(4), pp.
2316
2326
.10.1021/ef400121t
10.
Munzar
,
J.
,
Akih-Kumgeh
,
B.
,
Denman
,
B.
,
Zia
,
A.
, and
Bergthorson
,
J.
,
2013
, “
An Experimental and Reduced Modeling Study of the Laminar Flame Speed of Jet Fuel Surrogate Components
,”
Fuel
,
113
, pp.
586
597
.10.1016/j.fuel.2013.05.105
11.
UCSD Combustion Research
,
2012
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” University of California at San Diego, San Diego, CA, accessed Sept. 2013, http://combustion.ucsd.edu
12.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A.
,
Davis
,
S.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” University of Southern California, Los Angeles, CA, accessed Jan. 4, 2011, http://ignis.usc.edu/USC_Mech_II.htm
13.
Bieleveld
,
T.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Ranzi
,
E.
,
Niemann
,
U.
, and
Seshadri
,
K.
,
2009
, “
Experimental and Kinetic Modeling Study of Combustion of Gasoline, Its Surrogates and Components in Laminar Non-Premixed Flows
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
493
500
.10.1016/j.proci.2008.06.214
14.
Tang
,
C.
,
Man
,
X.
,
Wei
,
L.
,
Pan
,
L.
, and
Huang
,
Z.
,
2013
, “
Further Study on the Ignition Delay Times of Propane-Hydrogen-Oxygen-Argon Mixtures: Effect of Equivalence Ratio
,”
Combust. Flame
,
160
(
11
), pp.
2283
2290
.10.1016/j.combustflame.2013.05.012
15.
Lam
,
K.-Y.
,
Hong
,
Z.
,
Davidson
,
D.
, and
Hanson
,
R.
,
2011
, “
Shock Tube Ignition Delay Time Measurements in Propane/O2/Argon mixtures at Near-Constant-Volume Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
251
258
.10.1016/j.proci.2010.06.131
16.
Brown
,
C.
, and
Thomas
,
G.
,
1999
, “
Experimental Studies of Shock-Induced Ignition and Transition to Detonation in Ethylene and Propane Mixtures
,”
Combust. Flame
,
117
(
4
), pp.
861
870
.10.1016/S0010-2180(98)00133-3
17.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
,
1998
, “
Direct Experimental Determination of Laminar Flame Speeds
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
513
519
.10.1016/S0082-0784(98)80441-4
18.
Goodwin
,
D.
,
2003
, “
An Open-Source, Extensible Software Suite for CVD Process Simulation
,”
Proceedings of CVD XVI and EuroCVD-14, Paris, Apr. 27–May 3, Electrochemical Society
, Pennington, NJ, Vol.
14
, pp.
155
162
.
19.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F.
, and
Scire
,
J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
(3), pp.
109
136
.10.1002/kin.20218
20.
Krejci
,
M.
,
Mathieu
,
O.
,
Vissotski
,
A.
,
Ravi
,
S.
,
Sikes
,
T.
,
Petersen
,
E.
,
Kérmonès
,
A.
,
Metcalfe
,
W.
, and
Curran
,
H.
,
2013
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021503
.10.1115/1.4007737
You do not currently have access to this content.