The present study deals with the integration between a thermo-photo-voltaic generator (TPV) and an organic Rankine cycle (ORC), named here TORCIS (thermo-photo-voltaic organic Rankine cycle integrated system). The investigated TORCIS system is suitable for combined heat and power (CHP) applications, such as residential and tertiary sector users. The aim of the research project on this innovative system is the complete definition of the components’ design and the preprototyping characterization of the system, covering all the unresolved issues. This paper shows the results of a preliminary thermodynamic analysis of the system. In more details, TPV is a system to convert, into electric energy, the radiation emitted from an artificial heat source (i.e., combustion of fuel) by the use of photovoltaic cells; in this system, the produced electric power is strictly connected to the thermal one, as their ratio is almost constant and cannot be changed without severe loss in performance. The coupling between TPV and ORC allows us to overcome this limitation and to realize a cogenerative system, which can be regulated with a large degree of freedom, changing the electric-to-thermal power ratio. The paper presents and discusses the TORCIS achievable performance, highlighting its potential in the field of distributed generation and cogenerative systems.

References

1.
De Pascale
,
A.
,
Ferrari
,
C.
,
Melino
,
F.
,
Morini
,
M.
, and
Pinelli
,
M.
, 2012, “
Integration Between a Thermo-Photo-Voltaic Generator and an Organic Rankine Cycle
,”
Appl. Energy
,
97
, pp.
695
703
.
2.
Bosi
,
M.
,
Ferrari
,
C.
,
Melino
,
F.
,
Pinelli
,
M.
,
Spina
,
P. R.
, 2012, “
Thermophotovoltaic Energy Conversion—PART 1: Analytical Aspects
,” ICAE2012–A10175,
Fourth International Conference on Applied Energy
, Suzhou, China, July 5–8.
3.
Barbieri
,
E.
,
Ferrari
,
C.
,
Melino
,
F.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
, 2012, “
Thermophotovoltaic Energy Conversion—PART 2: Prototypes and Practical Experience
,” ICAE2012–A10176,
Fourth International Conference on Applied Energy
, Suzhou, China, July 5–8.
4.
Barbieri
,
E.
,
Bosi
,
M.
,
Ferrari
,
C.
,
Melino
,
F.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
, 2012, “
A State of the Art Review of Thermophotovoltaic Energy System
,” ECOS 2012, Perugia, Italy, June 26–29.
5.
Andreev
,
V. M.
,
Grilikhes
,
V. A.
,
Khvostikov
,
V. P.
,
Khvostikova
,
O. A.
,
Rumyantsev
,
V. D.
,
Sadchikov
,
N. A.
, and
Shvarts
,
M. Z.
, 2004, “
Concentrator PV Modules and Solar Cells for TPV Systems
,”
Sol. Energy Mater. Sol. Cells
,
84
, pp.
3
17
.
6.
Andreev
,
V. M.
,
Khvostikov
,
V. P.
,
Khvostikova
,
O. A.
,
Vlasov
,
A. S.
,
Gazaryan
,
P. Y.
,
Sadchikov
,
N. A.
, and
Rumyantsev
,
V. D.
, 2005, “
Solar Thermophotovoltaic System With High Temperature Tungsten Emitter
,”
Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference
, Lake Buena Vista, FL, Jan. 3–7, IEEE, New York, pp.
671
674
.
7.
Bianchi
,
M.
,
Ferrari
,
C.
,
Melino
,
F.
, and
Peretto
,
A.
, 2012, “
Feasibility Study of a Thermo-Photo-Voltaic System for CHP Application in Residential Buildings
,”
Appl. Energy
,
97
, pp.
704
713
.
8.
Barbieri
,
E. S.
,
Melino
,
F.
, and
Morini
,
M.
, 2012, “
Influence of the Thermal Energy Storage on the Profitability of Micro-CHP Systems for Residential Building Applications
,”
Appl. Energy
,
97
, pp.
714
722
.
9.
Bauer
,
T.
,
Forbes
,
I.
,
Penlington
,
R.
, and
Pearsall
,
N.
, 2002, “
The Potential of Thermophotovoltaic Heat Recovery for the Glass Industry
,”
Proceedings of the 5th Conference on Thermophotovoltaic Generation of Electricity
, Rome, Sept. 16–19, Vol.
653
,
T. J.
Coutts
,
G.
Guazzoni
, and
J.
Luther
, eds.,
AIP Press
,
New York
, pp.
101
110
.
10.
Mattarolo
,
G.
, 2005, “
High Temperature Recuperative Burner
,” 1st Conference for Thermophotovoltaics: Science to Business, Berlin, Jan. 27.
11.
Fraas
,
L. M.
,
Avery
,
J. E.
, and
Xiang Huang
,
H.
, 2002, “
Thermophotovoltaics: Heat and Electric Power From Low Bandgap ‘Solar’ Cells Around Gas Fired Radiant Tube Burners
,”
Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, Photovoltaic Specialists Conference, 2002
, IEEE, New York, pp.
1553
1556
.
12.
Fraas
,
L. M.
,
Avery
,
J. E.
, and
Huang
,
H. X.
, 2003, “
Thermophotovoltaic Furnace Generator for Home Using Low Bandgap GaSb Cells
,”
Semicond. Sci. Technol.
18
,
S247
S253
.
13.
Nelson
,
R. E.
, 1994, “
Thermophotovoltaic Emitter Development
,”
Proceedings of the 1st NREL/TPV Conference on Thermophotovoltaic Generation of Electricity
, Copper Mountain, CO, AIP-Press, New York, pp.
80
98
.
14.
Holmquist
,
G. A.
, 1995, “
TPV Power Source Development for an Unmanned Undersea Vehicle
,”
Proceedings of the 1st NREL/TPV Conferenceon Thermophotovoltaic Generation of Electricity
, Copper Mountain, CO, AIP-Press, New York, pp.
308
314
.
15.
Bitnar
,
B.
,
Durisch
,
W.
,
Mayor
,
J.-C.
,
Sigg
,
H.
, and
Tschudi
,
H. R.
, 2002, “
Characterisation of Rare Earth Selective Emitters for Thermophotovoltaic Applications
,”
Sol. Energy Mater. Sol. Cells
,
73
, pp.
221
234
.
16.
Coutts
,
T.
, 2001, “
An Overview of Thermophotovoltaic Generation of Electricity
,”
Sol. Energy Mater. Sol. Cells.
66
, pp.
443
452
.
17.
Rahmlow
, Jr.,
T. D.
,
Depoy
,
D. M.
,
Fourspring
,
P. M.
,
Ehsani
,
H.
,
Lazo-Wasem
,
J. E.
, and
Gratrix
,
E. J.
, 2006, “
Development of Front Surface, Spectral Control Filters With Greater Temperature Stability for Thermophotovoltaic Energy Conversion
,”
Proceedings of the 7th World Conference on Thermophotovoltaic Generation of Electricity
, Madrid, Sept. 25–27, Vol.
890
,
AIP Press
,
New York
, pp.
59
67
.
18.
Nagashima
,
T.
,
Okumura
,
K.
, and
Yamaguchi
,
M.
, 2006, “
A Germanium Back Contact Type Thermophotovoltaic Cell
,”
Proceedings of the 7th World Conference on Thermophotovoltaic Generation of Electricity
, Madrid, Sept. 25–27, Vol.
890
,
AIP Press
,
New York
, pp.
172
181
.
19.
Mattarolo
,
G.
,
Bard
,
J.
, and
Schmid
,
J.
, 2006, “
Experimetal Testing and Modelling Approach for a TPV Prototype
,”
Proceedings of the 7th World Conference on Thermophotovoltaic Generation of Electricity
, Madrid, Sept. 25–27, Vol.
890
,
AIP Press
,
New York
, pp.
264
272
.
20.
Swanson
,
R. M.
, 1978, “
Silicon Photovoltaic Cells in Thermophotovoltaic Energy Conversion
,”
International Electron Devices Meeting
, Washington, D.C., Dec. 4–6, Vol.
24
,
IEEE
,
New York
, pp.
70
73
.
21.
Bitnar
,
B.
,
Durisch
,
W.
,
Mayor
,
J.-C.
,
Palfinger
,
G.
,
Sigg
,
H.
,
Grutzmacher
,
D.
, and
Gobrecht
,
J.
, 2002, “
Record Electricity to Gas Power Efficiency of a Silicon Solar Cell Based TPV System
,”
Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference
,
IEEE
,
New York
, pp.
880
883
.
22.
Qiu
,
K.
, and
Hayden
,
A. C. S.
, 2006, “
Development of a Silicon Concentrator Solar Cell Based TPV Power System
,”
Energy Convers. Manage.
,
47
, pp.
365
376
.
23.
Khvostikov
,
V. P.
,
Rumyantsev
,
V. D.
,
Khvostikova
,
O. A.
,
Gazaryan
,
P. Y.
,
Sorokina
,
S. V.
,
Potapovich
,
N. S.
,
Shvarts
,
M. Z.
, and
Andreev
,
V. M.
, 2005, “
Narrow Bandgap GaAs and InGaAsSb/GaSb Based Cells for Mechanically Stacked Tandems and TPV Converters
,”
Proceedings of the 20th European Photovoltaic Energy Conference
, Barcelona, Spain, June 6-10.
24.
Wang
,
C. A.
,
Huang
,
R. K.
,
Connors
,
M. K.
,
Shiau
,
D. A.
,
Murphy
,
P. G.
,
O’Brien
,
P. W.
,
Anderson
,
A. C.
,
Donetsky
,
D.
,
Anikeev
,
S.
,
Belenky
,
G.
,
Luryi
,
S.
, and
Nichols
,
G.
, 2004, “
Monolithic Series-Interconnected GaInAsSb/AlGaAsSb Thermophotovoltaic Devices Wafer Bonded to GaAs
,”
AIP Conf. Proc.
,
738
, pp.
294
302
.
25.
Khvostikov
,
V. P.
,
Khostikov
,
O. A.
,
Oliva
,
E. V.
,
Rumyantsev
,
V. D.
,
Shvarts
,
M. Z.
,
Tabarov
,
T. S.
, and
Andreev
,
V. M.
, 2002, “
Zinc-Diffused InAsSbP/InAs and Ge TPV Cells
,”
Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference
, IEEE, New York.
26.
Andreev
,
V. M.
,
Khvostikov
,
V. P.
,
Khvostikova
,
O. V.
,
Oliva
,
E. V.
,
Rumyantsev
,
V. D.
, and
Shvarts
,
M. Z.
, 2002, “
Low-Bandgap Ge and InAsSbP/InAs-Based TPV Cells
,”
Proceedings of the 5th Conference on Thermophotovoltaic Generation of Electricity
, Rome, Sept. 16–19, AIP Press, New York, pp.
383
391
.
27.
Palfinger
,
G.
,
Bitnar
,
B.
,
Durisch
,
W.
,
Mayor
,
J.-C.
,
Grützmacher
,
D.
, and
Gobrecht
,
J.
, 2001, “
Cost Estimates of Electricity From a TPV Residential Heating System
,”
Proceedings of the 17th European Photovoltaic Solar Energy Conference
, Munich, Germany, Oct. 22–26.
28.
Beith
,
B.
, 2010,
Small- and Micro-Combined Heat and Power (CHP) Systems. Advanced Design, Performance, Materials and Applications
,
Woodhead
,
Cambridge, UK
.
29.
Nguyen
,
V. M.
,
Doherty
,
P. S.
, and
Riffat
,
S. B.
, 2001, “
Development of a Prototype Low-Temperature Rankine Cycle Electricity Generation System
,”
Appl. Thermal Eng.
,
21
, pp.
169
181
.
30.
Larjola
,
J.
, 1995, “
Electricity From Industrial Waste Heat Using High-Speed Organic Rankine Cycle (ORC)
,”
Int. J. Prod. Econ.
,
41
, pp.
227
235
.
31.
Yari
,
M.
, 2008, “
Thermodynamic Analysis of a Combined Micro Turbine With a Micro ORC
,” ASME Paper No. GT2008-51163.
32.
Bhargava
,
R. K.
,
Bianchi
,
M.
, and
De Pascale
,
A.
, 2011, “
Gas Turbine Bottoming Cycles for Cogenerative Applications: Comparison of Different Heat Recovery Cycle Solutions
,”
Proceedings of ASME Turbo Expo 2011
, Vancouver, Canada, June 6-10, ASME Paper No. GT2011-46236.
33.
Saleh
,
B.
,
Koglbauer
,
G.
,
Wendland
,
M.
, and
Fischer
,
J.
, 2007, “
Working Fluids for Low-Temperature Organic Rankine Cycles
,”
Energy
,
32
, pp.
1210
1221
.
34.
Husband
,
W.W.
, and
Beyene
,
A.
, 2008, “
Feasibility Study of Low Grade Heat Recovery Rankine Cycle Using Ozone-Neutral Refrigerant
”, ASME Paper No. GT2008-51537.
35.
Inoue
,
N.
,
Kaneko
,
A.
,
Watanabe
,
H.
,
Uchimura
,
T.
, and
Irie
,
K.
, 2007, “
Development of Electric Power Generation Unit Driven by Waste Heat (Study on Working Fluids and Expansion Turbines)
,” ASME Paper No. GT2007-27749.
36.
Larjola
,
J.
,
Uusitalo
,
A.
, and
Turunen-Saaresti
T.
, 2011, “
Background and Summary of Commercial ORC Development and Exploitation
,”
ORC 2011—First International Seminar on ORC Power Systems
, Delft, The Netherlands, Sept. 22–23.
37.
Gaia
,
M.
, 2002, “
The Altheim Rankine Cycle Turbogenerator, 1 MWel Organic Rankine Cycle Power Plant Powered by Low Temperature Geothermal Water
,”
Geothermische Vereinigung
(Geothermische Energie),
Geeste
, ed.,
GtV-Bundesverband Geothermie e.V.
,
Berlin
, Vols.
36/37
, pp.
23
25
.
38.
Bianchi
,
M.
,
Branchini
,
L.
,
De Pascale
,
A.
, and
Di Nocco
,
S.
, 2011, “
Thermodynamic Investigation on Different ORC Configurations
,” ORC 2011—First International Seminar on ORC Power Systems, Delft, The Netherlands, Sept. 22–23.
39.
Barbieri
,
E. S.
,
Morini
,
M.
, and
Pinelli
,
M.
, 2011, “
Development of a Model for the Simulation of Organic Rankine Cycle Based on a Group Contribution Techniques
,” ASME Paper No. GT2011-45616.
40.
Bianchi
,
M.
, and
De Pascale
,
A.
, 2011, “
Bottoming Cycles for Electric Energy Generation: Parametric Investigation of Available and Innovative Solutions for the Exploitation of Low and Medium Temperature Heat Sources
,”
Appl. Energy
,
88
, pp.
1500
1509
.
41.
Thermoflow Inc., 2011, Thermoflow 21.0.1, Sudbury, MA.
42.
Colonna
,
P.
, and
van der Stelt
,
T. P.
, 2004, FluidProp: A Program for the Estimation of Thermophysical Properties of Fluids, Energy Technology Section, Delft University of Technology, Delft, The Netherlands, http://www.FluidProp.comhttp://www.FluidProp.com
43.
European Parliament and the Council of the European Union, 2004, “Directive 2004/8/EC of the European Parliament and of the Council,” European Directive No. 2004/8/EC.
You do not currently have access to this content.