This paper presents a computational investigation of the effect of mass transfer on the performance of selective catalytic reduction (SCR) catalysts, which are employed to reduce NOx emissions from diesel engines. The paper employs a single-channel based, one-dimensional, isothermal model. The heterogeneous surface chemistry is modeled by considering standard and fast SCR mechanisms, and the mass transfer rate is described by using a one-dimensional film model and dimensionless Sherwood (Sh) number. The paper investigates the effect of Sh numbers on the catalyst conversion performance at various temperatures and space velocities. The results show that the effect of the Sh number on the SCR catalyst performance is temperature dependent and is more pronounced at high space velocities. In general, higher Sh numbers lead to increased conversion efficiencies.

1.
Koebel
,
M.
,
Elsener
,
M.
, and
Kleemann
,
M.
, 2000, “
Urea-SCR: A Promising Technique to Reduce NOx Emissions From Automotive Diesel Engines
,”
Catal. Today
0920-5861,
59
, pp.
335
345
.
2.
Chatterjee
,
D.
,
Burkhardt
,
T.
,
Weibel
,
M.
,
Tronconi
,
E.
,
Nova
,
I.
, and
Ciardelli
,
C.
, 2006, “
Numerical Simulation of NO/NO2/NH3 Reactions on SCR-Catalytic Converters: Model Development and Applications
,” SAE Technical Paper No. 2006-01-0468.
3.
Chatterjee
,
D.
,
Burkhardt
,
T.
,
Weibel
,
M.
,
Nova
,
I.
,
Grossale
,
A.
, and
Tronconi
,
E.
, 2007, “
Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters
,” SAE Technical Paper No. 2007-01-1136.
4.
Devadas
,
M.
,
Kröcher
,
O.
,
Elsener
,
M.
,
Wokaum
,
A.
,
Söger
,
N.
,
Pfeifer
,
M.
,
Demel
,
Y.
, and
Mussmann
,
L.
, 2006, “
Influence of NO2 on the Selective Catalytic Reduction of NO With Ammonia Over Fe-ZSM5
,”
Appl. Catal., B
0926-3373,
67
, pp.
187
196
.
5.
Nova
,
I.
,
Lietti
,
L.
,
Tronconi
,
E.
, and
Forzatti
,
P.
, 2000, “
Dynamics of SCR Reaction Over a TiO2-Supported Vanadia-Tungsta Commercial Catalyst
,”
Catal. Today
0920-5861,
60
, pp.
73
82
.
6.
Koebel
,
M.
, and
Elsener
,
M.
, 1998, “
Selective Catalytic Reduction of NO Over Commercial DeNOx-Catalysts: Experimental Determination of Kinetic and Thermodynamic Parameters
,”
Chem. Eng. Sci.
0009-2509,
53
, pp.
657
669
.
7.
Holmgren
,
A.
, and
Andersson
,
B.
, 1998, “
Mass Transfer in Monolith Catalysts—CO Oxidation Experiments and Simulations
,”
Chem. Eng. Sci.
0009-2509,
53
, pp.
2285
2298
.
8.
Balakotaiah
,
V.
, and
West
,
D. W.
, 2002, “
Shape Normalization and Analysis of the Mass Transfer Controlled Regime in Catalytic Monoliths
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
1269
1286
.
9.
Massing
,
E.
,
Brilhac
,
J. F.
,
Brillard
,
A.
,
Gilot
,
P.
, and
Prado
,
G.
, 2000, “
Modelling of the Behaviour of a Three Way Catalytic Converter at Steady State Influence of the Propene Diffusion Inside the Catalytic Layer
,”
Chem. Eng. Sci.
0009-2509,
55
, pp.
1707
1716
.
10.
Ryan
,
M. J.
,
Becke
,
E. R.
, and
Zygourakis
,
K.
, 1991, “
Light-Off Performance of Catalytic Converters: The Effect of Heat/Mass Transfer Characteristics
,” SAE Technical Paper No. 910610.
11.
Young
,
L. C.
, and
Finlayson
,
B. A.
, 1976, “
Mathematical Models of the Monolith Catalytic Converter: Part I. Development of Model and Application of Orthogonal Collocation
,”
AIChE J.
0001-1541,
22
, pp.
331
343
.
12.
Hawthorns
,
R. D.
, 1974, “
Afterburner Catalysts: Effect of Heat and Mass Transfer Between Gas and Catalyst Surface
,”
AIChE Symp. Ser.
0065-8812,
70
, pp.
428
438
.
13.
Hayes
,
R. E.
, and
Kolaczkowski
,
S. T.
, 1994, “
Mass and Heat Transfer Effects in Catalytic Monolith Reactors
,”
Chem. Eng. Sci.
0009-2509,
49
, pp.
3587
3599
.
14.
Hayes
,
R. E.
, and
Kolaczkowski
,
S. T.
, 1999, “
A Study of Nusselt and Sherwood Numbers in a Monolith Reactor
,”
Catal. Today
0920-5861,
47
, pp.
295
303
.
15.
Votruba
,
J.
,
Mikus
,
O.
,
Nguyen
,
K.
,
Hlavacek
,
V.
, and
Skrivanek
,
J.
, 1975, “
Heat and Mass Transfer in Honeycomb Catalysts—II
,”
Chem. Eng. Sci.
0009-2509,
30
, pp.
201
206
.
16.
Ullah
,
U.
,
Waldram
,
S. P.
,
Bennett
,
C. J.
, and
Truex
,
T.
, 1992, “
Monolithic Reactors: Mass Transfer Measurements Under Reacting Conditions
,”
Chem. Eng. Sci.
0009-2509,
47
, pp.
2413
2418
.
17.
Tronconi
,
E.
, and
Forzatti
,
P.
, 1992, “
Adequacy of Lumped Parameter Models for SCR Reactors With Monolith Structure
,”
AIChE J.
0001-1541,
38
, pp.
201
210
.
18.
Groppi
,
G.
,
Belloli
,
A.
,
Tronconi
,
E.
, and
Forzatti
,
P.
, 1995, “
A Comparison of Lumped and Distributed Models of Monolith Catalytic Combustors
,”
Chem. Eng. Sci.
0009-2509,
50
, pp.
2705
2715
.
19.
Arrighetti
,
C.
,
Cordiner
,
S.
, and
Mulone
,
V.
, 2007, “
Heat and Mass Transfer Evaluation in the Channels of an Automotive Catalytic Converter by Detailed Fluid-Dynamic and Chemical Simulation
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
536
554
.
20.
Koebel
,
M.
, and
Elsener
,
M.
, 1998, “
Selective Catalytic Reduction of NO Over Commercial DeNOx-Catalysts: Comparison of the Measured and Calculated Performance
,”
Ind. Eng. Chem. Res.
0888-5885,
37
, pp.
327
335
.
21.
Shamim
,
T.
, 2003, “
Effect of Heat and Mass Transfer Coefficients on the Performance of Automotive Catalytic Converters
,”
Int. J. Engine Res.
1468-0874,
4
, pp.
129
141
.
22.
Kim
,
J. Y.
,
Cavataio
,
G.
,
Patterson
,
J. E.
,
Laing
,
P. M.
, and
Lambert
,
C. K.
, 2007, “
Laboratory Studies and Mathematical Modeling of Urea SCR Catalyst Performance
,” SAE Technical Paper No. 2007-01-1573.
You do not currently have access to this content.