A three kilowatt turboshaft engine with a ceramic recuperator and turbine has been designed for small unmanned air vehicle (UAV) propulsion and portable power generation. Compared with internal combustion (IC) engines, gas turbines offer superior reliability, engine life, noise and vibration characteristics, and compatibility with military fuels. However, the efficiency of miniature gas turbines must be improved substantially, without severely compromising weight and cost, if they are to compete effectively with small IC engines for long-endurance UAV propulsion. This paper presents a design overview and supporting analytical results for an engine that could meet this goal. The system architecture was chosen to accommodate the limitations of mature, cost-effective ceramic materials: silicon nitride for the turbine rotors and toughened mullite for the heat exchanger and turbine stators. An engine with a cycle pressure ratio below 2:1, a multistage turbine, and a highly effective recuperator is shown to have numerous advantages in this context. A key benefit is a very low water vapor-induced surface recession rate for silicon nitride, due to an extremely low partial pressure of water in the combustion products. Others include reduced sensitivity to internal flaws, creep, and foreign object damage; an output shaft speed low enough for grease-lubricated bearings; and the potential viability of a novel premixed heat-recirculating combustor.

1.
Monroe
,
M. A.
, 2003, “
A Market and Engineering Study of a 3-Kilowatt Class Gas Turbine Generator
,” MS thesis, Massachusetts Institute of Technology, Cambridge, MA.
2.
Simon
,
T. W.
, and
Jiang
,
N.
, 2003, “
Micro- or Small-Gas Turbines
,” Paper No. IGTC2003Tokyo KS-1.
3.
Monroe
,
M. A.
,
Epstein
,
A. H.
,
Kumakura
,
H.
, and
Isomura
,
K.
, 2005, “Component Integration and Loss Sources in 3–5 kW Gas Turbines,” ASME Paper No. GT2005-68715.
4.
National Research Council
, 2000,
Uninhabited Air Vehicles: Enabling Science for Military Systems
,
National Academy of Sciences
,
Washington, DC
, pp.
59
61
.
5.
Department of Defense Directive
, 1988, “
Fuel Standardization
,” Paper No. 4140.43.
6.
NORTH Atlantic Treaty Organization, Military Agency for Standardization
, 1987, “
Fuels for Future Ground Equipments Using Compression Ignition or Turbine Engines
,” Standardization Agreement, STANAG Paper No. 4362, AC/112 (WG/4) DS.
7.
Garrett
,
R. K.
, 1993, “
Is a Single Fuel on the Battlefield Still a Viable Option?
,” Executive Research Project, National Defense University, Washington, DC, www.ndu.edu/library/ic6/93S27.pdfwww.ndu.edu/library/ic6/93S27.pdf
9.
Iki
,
N.
,
Inoue
,
T.
,
Matsunuma
,
T.
,
Yoshida
,
H.
,
Sodeoka
,
S.
, and
Suzuki
,
M.
, 2007, “
Gas Turbine With Ceramic and Metal Components
,” ASME Paper No. GT2007-27630.
10.
Iki
,
N.
,
Inoue
,
T.
,
Matsunuma
,
T.
,
Yoshida
,
H.
,
Sodeoka
,
S.
,
Suzuki
,
M.
,
Ebara
,
T.
, and
Lee
,
Y.
, 2006, “
Micro Gas Turbine With Ceramic Nozzle and Rotor
,” ASME Paper No. GT2006-90328.
11.
Matsunuma
,
T.
,
Yoshida
,
H.
,
Iki
,
N.
,
Ebara
,
T.
,
Sodeoka
,
S.
,
Inoue
,
T.
,
Suzuki
,
M.
, 2005, “
Micro Gas Turbine With Ceramic Nozzle and Rotor
,” ASME Paper No. GT2005-68711.
12.
Richerson
,
D. W.
, 2006, “
Historical Review of Addressing the Challenges of Use of Ceramic Components in Gas Turbine Engines
,” ASME Paper No. GT2006-90330.
13.
van Roode
,
M.
,
Ferber
,
M. K.
, and
Richerson
,
D. W.
, eds., 2002,
Ceramic Gas Turbine Design and Test Experience
,
ASME
,
New York
, Vol.
1
.
14.
van Roode
,
M.
,
Ferber
,
M. K.
, and
Richerson
,
D. W.
, eds., 2003,
Ceramic Gas Turbine Component Development and Characterization
,
ASME
,
New York
, Vol.
2
, Chap. 30.
15.
Foster
,
S.
, 2008, Kyocera Industrial Ceramic Components, private communication.
16.
Wilson
,
D. G.
, 1997, “
A New Approach to Low-Cost High-Efficiency Automotive Gas Turbines
,” SAE Paper No. 970234.
17.
Wilson
,
D. G.
, and
Korakianitis
,
T.
, 1998,
The Design of High-Efficiency Turbomachinery and Gas Turbines
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
564
565
.
18.
Wilson
,
D. G.
, 2003, “
Regenerative Heat Exchangers for Microturbines, and an Improved Type
,” ASME Paper No. GT2003-38871.
19.
Wilson
,
D. G.
, and
Ballou
,
J. M.
, 2006, “
Design and Performance of a High-Temperature Regenerator Having Very High Effectiveness, Low Leakage and Negligible Seal Wear
,” ASME Paper No. GT2006-90095.
20.
McDonald
,
C. F.
, 1997, “
Ceramic Heat Exchangers—The Key to High Efficiency in Very Small Gas Turbines
,” ASME Paper No. 97-GT-463.
21.
McDonald
,
C. F.
, and
Wilson
,
D. G.
, 1996, “
The Utilization of Recuperated and Regenerated Engine Cycles for High-Efficiency Gas Turbines in the 21st Century
,”
Appl. Therm. Eng.
1359-4311,
16
(
8–9
), pp.
635
653
.
22.
McDonald
,
C. F.
, and
Rodgers
,
C.
, 2008, “
Small Recuperated Ceramic Microturbine Demonstrator Concept
,”
Appl. Therm. Eng.
1359-4311,
28
(
1
), pp.
60
74
.
23.
Wilson
,
M. A.
,
Recknagle
,
K. P.
, and
Brooks
,
K.
, 2005, “
Design and Development of a Low-Cost, High Temperature Silicon Carbide Microchannel Recuperator
,” ASME Paper No. GT2005-69143.
24.
McDonald
,
C. F.
, 2000, “
Low Cost Primary Surface Recuperator Concept for Microturbines
,”
Appl. Therm. Eng.
1359-4311,
20
(
5
), pp.
471
497
.
25.
Shih
,
H. -Y
,
Wang
,
D.
, and
Kuo
,
C. -R
, 2006, “
Feasibility Study of an Innovative Micro Gas Turbine With a Swiss-Roll Recuperator
,” ASME Paper No. GT2006-91120.
26.
Jones
,
A. R.
,
Lloyd
,
S. A.
, and
Weinberg
,
F. J.
, 1978,
“Combustion in Heat Exchangers
,”
Proc. R. Soc. London
0370-1662,
360
(
1700
), pp.
97
115
.
27.
Lloyd
,
S. A.
, and
Weinberg
,
F. J.
, 1974, “
A Burner for Mixtures of Very Low Heat Content
,”
Nature (London)
0028-0836,
251
, pp.
47
49
.
28.
Lloyd
,
S. A.
, and
Weinberg
,
F. J.
, 1975, “
Limits to Energy Release and Utilisation From Chemical Fuels
,”
Nature (London)
0028-0836,
257
, pp.
367
370
.
29.
Pullen
,
K. R.
,
Etemad
,
M. R.
, and
Fenocchi
,
A.
, 1996, “
The High Speed Axial Flux Disc Generator—Unlocking the Potential of the Automotive Gas Turbine
,”
Machines and Drives for Electric and Hybrid Vehicles
,
IEE
,
London
.
30.
Ferber
,
M. K.
,
Lin
,
H. -T.
,
Jenkins
,
M. G.
, and
Ohji
,
T.
, 2003,
Ceramic Gas Turbine Component Development and Characterization
,
ASME
,
New York
, Vol.
2
, Chap. 19, pp.
353
395
in Ref. (16).
31.
Opila
,
E. J.
, 2003, “
Oxidation and Volatilization of Silica Formers in Water Vapor
,”
J. Am. Ceram. Soc.
0002-7820,
86
(
8
), pp.
1238
48
.
32.
Opila
,
E. J.
,
Robinson
,
R. C.
,
Fox
,
D. S.
,
Wenglarz
,
R. A.
, and
Ferber
,
M. K.
, 2003, “
Additive Effects on Si3N4 Oxidation/Volatilization in Water Vapor
,”
J. Am. Ceram. Soc.
0002-7820,
86
(
8
), pp.
1262
1271
.
33.
Fox
,
D. S.
,
Opila
,
E. J.
,
Nguyen
,
Q. N.
,
Humphrey
,
D. L.
, and
Lewton
,
S. M.
, 2003, “
Paralinear Oxidation of Silicon Nitride in a Water Vapor/Oxygen Environment
,”
J. Am. Ceram. Soc.
0002-7820,
86
(
8
), pp.
1256
1261
.
34.
Stark
,
R.
, and
Vick
,
M.
, 2005, “
Analysis of Silicon Nitride for Use in a Small Recuperated Turboshaft Engine
,”
NRL
Memorandum Report No. NRL/MR/5710-09-8895.
35.
Wilson
,
D. G.
, and
Korakianitis
,
T.
, 1998,
The Design of High-Efficiency Turbomachinery and Gas Turbines
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
299
300
.
36.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
, 2003,
Axial and Radial Turbines
,
Concepts NREC, Inc.
,
White River Junction, VT
, p.
22
.
37.
Wilson
,
D. G.
, and
Korakianitis
,
T.
, 1998,
The Design of High-Efficiency Turbomachinery and Gas Turbines
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
235
237
.
38.
Gannon
,
M. C.
, ed., 2006,
Taking the Heat: Proper Lubrication and Sealing Systems Are Critical in Maintaining the Right Temperature Levels in High-Speed Applications
,
Motion System Design
,
Skokie, IL
.
39.
Ronney
,
P. D.
, 2003, “
Analysis of Non-Adiabatic Heat-Recirculating Combustors
,”
Combust. Flame
0010-2180,
135
, pp.
421
439
.
40.
Bender
,
B. A.
, and
Pan
,
M.
, 2009, “
Selection of a Toughened Mullite for a Miniature Gas Turbine Engine
,”
Proceedings of the 33rd International Conference on Advanced Ceramics and composites (ICACC)
, Daytona Beach, FL.
41.
McDonald
,
C. F.
, 2003, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
1463
1487
.
You do not currently have access to this content.