Current technology of thermal barrier coating systems used in gas turbine blade applications relies on the use of a metallic bond coat, which has a twofold function: (i) it develops a thin layer of aluminum oxide enhancing the adhesion of the ceramic top coat and (ii) it provides an additional resistance to oxidation. It was the objective of this study to develop an understanding of the role of platinum in bond coats of the diffusion-type deposited on a nickel-based superalloy. Two Pt-containing bond coats were included in the study: (i) a platinum-aluminide and (ii) a bond coat formed by interdiffusion between an electroplated layer of platinum and the superalloy substrate. In both cases, the top ceramic coat was yttria-stabilized zirconia. For reference purposes, a simple aluminide bond coat free of Pt was also included in the study. Thermal exposure tests at 1150°C with a 24 h cycling period at room temperature were used to compare the coating performance. Microstructural features were characterized by various electron-optical techniques. Experimental results indicated that Pt acts as a “cleanser” of the oxide-bond coat interface by decelerating the kinetics of interdiffusion between the bond coat and superalloy substrate. This was found to promote selective oxidation of Al resulting in a purer Al2O3 scale of a slower growth rate increasing its effectiveness as “glue” holding the ceramic top coat to the underlying metallic substrate. However, the exact effect of Pt was found to be a function of the state of its presence within the outermost coating layer. Of the two bond coats studied, a surface layer of Pt-rich gamma prime phase (L12 superlattice) was found to provide longer coating life in comparison with a mixture of PtAl2 and beta phase. This could be related to the effectiveness of gamma prime phase as a sink for titanium minimizing its detrimental effect on the adherence of aluminum oxide.

1.
Sims
,
C. T.
, 1991, “
Non-Metallic Materials for Gas Turbine Engines: Are they Real
,”
Advanced Materials and Processes
,
139
(
6
), pp.
32
39
0882-7958.
2.
Lammermann
,
H.
and
Kienel
,
G.
, 1991, “
Physical Vapor Deposition Coatings for Aircraft Turbine Blades
,”
Advanced Materials and Processes
,
140
(
6
), pp
18
23
0882-7958.
3.
Evans
,
A. G.
,
Mumm
,
D. R.
,
Hutchinson
,
J. W.
,
Meier
,
G. H.
, and
Petit
,
F. S.
, 2001, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
0079-6425,
46
, pp.
505
553
.
4.
Tolpygo
,
V.
, and
Clarke
,
D. R.
, 2005, “
The Effect of Pre-Oxidation Treatment on the Cyclic Life of EB-PVD Thermal Barrier Coatings With Platinum-Aluminide Bond Coats
,”
Surf. Coat. Technol.
0257-8972,
200
(
5–6
), pp.
1276
1281
.
5.
Tawancy
,
H. M.
,
UI-Hamid
,
A.
,
Aboelfotoh
,
M. O.
, and
Abbas
,
N. M.
, 2008, “
Effect of Pt on the Oxide-to-Metal Adhesion in Thermal Barrier Coating Systems
,”
J. Mater. Sci.
0022-2461,
43
(
9
), pp.
2978
2989
.
6.
Pomeroy
,
M. J.
, 2005, “
Coatings for Gas Turbine Materials and Long Term Stability Issues
,”
Mater. Des.
0264-1275,
26
(
3
), pp.
223
231
.
7.
Tawancy
,
H. M.
,
Mohamed
,
A. I.
,
Abbas
,
N. M.
,
Jones
,
R. E.
, and
Rickerby
,
D. S.
, 2003, “
Effect of Superalloy Substrate Composition on the Performance of a Thermal Barrier Coating System
,”
J. Mater. Sci.
0022-2461,
38
, pp
3797
3807
.
8.
Guerre
,
C.
,
Remy
,
L.
, and
Molins
,
R.
, 2003, “
Alumina Scale Growth and Degradation Modes of a TBC System
,”
Mater. High Temp.
,
20
(
4
0960-3409), pp.
481
485
.
9.
Yanar
,
N. M.
,
Kim
,
G.
,
Hamano
,
S.
,
Petit
,
F. S.
, and
Meier
,
G. H.
, 2003, “
Microstructural Characterization of the Failures of Thermal Barrier Coatings on Ni-Base Superalloys
,”
Mater. High Temp.
,
20
(
4
0960-3409), pp.
495
506
.
10.
Mumm
,
D. R.
,
Evans
,
A. G.
, and
Spitsberg
,
I. T.
, 2001, “
Characterization of a Cyclic Displacement Instability for a Thermally Grown Oxide in a Thermal Barrier System
,”
Acta Mater.
1359-6454,
49
(
12
), pp.
2329
2340
.
11.
Tawancy
,
H. M.
,
Sridhar
,
N.
,
Abbas
,
N. M.
, and
Rickerby
,
D. S.
, 2000, “
Comparative Performance of Selected Bond Coats in Advanced Thermal Barrier Coating Systems
,”
J. Mater. Sci.
0022-2461,
35
, pp.
3615
3629
.
12.
Gell
,
M.
,
Vaidyanathan
,
K.
,
Barber
,
B.
,
Cheng
,
J.
, and
Jordan
,
E.
, 1999, “
Mechanism of Spallation in Platinum Aluminide/Electron Beam Physical Vapor-Deposited Thermal Barrier Coatings
,”
Metall. Mater. Trans. A
1073-5623,
30
(
2
), pp.
427
435
.
13.
Tawancy
,
H. M.
,
Sridhar
,
N.
,
Abbas
,
N. M.
, and
Rickerby
,
D. S.
, 1998, “
Failure Mechanism of a Thermal Barrier Coating System on a Nickel-Base Superalloy
,”
J. Mater. Sci.
0022-2461,
33
, pp.
681
686
.
14.
Meier
,
S. M.
,
Nissley
,
D. M.
,
Sheffler
,
K. D.
, and
Cruse
,
T. A.
, 1992, “
Thermal Barrier Coating Life Prediction Model Development
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
114
, pp.
258
263
.
15.
Panat
,
R.
,
Hsia
,
K. J.
, and
Oldham
,
J.
, 2005, “
Rumpling Instability in Thermal Barrier Systems Under Isothermal Conditions in Vacuum
,”
Philos. Mag.
1478-6435,
85
(
1
), pp
45
64
.
16.
Panat
,
R.
, and
Hsia
,
K. J.
, 2004, “
Experimental Investigation of the Bond-Coat Rumpling Instability Under Isothermal and Cyclic Thermal Histories in Thermal Barrier Systems
,”
Proc. R. Soc. London, Ser. A
0950-1207,
460
(
2047
), pp.
1957
1979
.
17.
Tolpygo
,
V. K.
, and
Clarke
,
D. R.
, 2004, “
On the Rumpling Mechanism in Nickel-Aluminide Coatings Part I: An Experimental Assessment
,”
Acta Mater.
1359-6454,
52
(
17
), pp.
5115
5127
.
18.
Panat
,
R.
,
Hsia
,
K. J.
, and
Cahill
,
D. G.
, 2005, “
Evolution of Surface Waviness in Thin Films Via Volume and Surface Diffusion
,”
J. Appl. Phys.
0021-8979,
97
(
1
), p.
013521
.
19.
Izumi
,
T.
, and
Gleeson
,
B.
, 2007, “
Oxidation Resistance of Pt Containing γ-Ni+γ′-Ni3Al Alloys
,”
J. Jpn. Inst. Met.
0021-4876,
71
(
1
), pp.
34
40
.
20.
Glesso
,
B.
,
Wang
,
W.
,
Hayashi
,
S.
, and
Sordelet
,
D.
, 2004, “
Effects of Platinum on the Interdiffusion and Oxidation Behavior of Ni–Al-Based Alloys
,”
High Temperature Corrosion and Protection of Materials
, Vol.
6
, Part 1, pp.
461
464
and Part 2, pp. 213–222.
21.
Tatlock
,
G. J.
, and
Hurd
,
T. J.
, 1984, “
Platinum and the Oxidation Behavior Nickel Based Superalloy
,”
Oxid. Met.
0030-770X,
22
(
5–6
), pp.
201
226
.
22.
Zhang
,
Y.
,
Haynes
,
J. A.
,
Lee
,
W. Y.
,
Wright
,
I. G.
,
Pint
,
B. A.
,
Cooley
,
K. M.
, and
P. Liaw
,
K.
, 2001, “
Effects of Pt Incorporation on the Isothermal Oxidation Behavior of CVD Aluminide Coatings
,”
Metall. Mater. Trans. A
1073-5623,
32A
, pp.
1727
1741
.
23.
Tawancy
,
H. M.
,
Abbas
,
N. M.
, and
Rhys-Jones
,
T. N.
, 1991, “
Role of Pt in Aluminide Coatings
,”
Surf. Coat. Technol.
0257-8972,
49
, pp.
1
7
.
24.
Schaffer
,
J.
,
Kim
,
G. M.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
, 1989,
The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys
,
E.
Lang
, ed.,
Elsevier
,
New York
, pp.
231
270
.
25.
Jackson
,
M. R.
, and
Rairden
,
J. R.
, 1977, “
The Aluminization of Platinum and Platinum-Coated IN-738
,”
Metall. Trans. A
0360-2133,
8A
, pp.
1697
1707
.
26.
Wood
,
J. H.
, and
Goldman
,
E. H.
, 1987,
Superalloys II
,
C. T.
Sims
,
N. S.
Stoloff
, and
W. C.
Hagel
, eds.,
Wiley
,
New York
, pp.
359
384
.
27.
Smialek
,
J. L.
, and
Meier
,
G. H.
, 1987,
Superalloys II
,
C. T.
Sims
,
N. S.
Stoloff
, and
W. C.
Hagel
, eds.,
Wiley
,
New York
, pp.
293
326
.
You do not currently have access to this content.