Among the Generation IV systems, sodium fast reactors (SFRs) are promising and benefits of considerable technological experience. However, the availability and acceptability of the SFR are affected by the problems linked with the sodium-water reaction. One innovative solution to this problem is the replacement of the sodium in the secondary loops by an alternative liquid fluid. Among the fluids considered, lead-bismuth is at the moment being evaluated. Liquid lead-bismuth has been considerably studied in the frame of the research program on accelerator driven systems for transmutation applications. However, lead alloys are corrosive toward structural materials. The main parameters impacting the corrosion rate of Fe–Cr martensitic steels (considered as structural materials) are the nature of the steel (material side), temperature, liquid alloy velocity, and dissolved oxygen concentration (liquid alloy side). In this study, attention is focused on the behavior of Fe-9Cr steels, and more particularly, T91 martensitic steel. It has been shown that in the case of Fe–Cr martensitic steels, the corrosion process depends on the concentration of oxygen dissolved in Pb–Bi. For an oxygen concentration lower than the one necessary for magnetite formation (approximately <108wt% at T500°C for Fe-9Cr steels), corrosion proceeds by dissolution of the steel. For a higher oxygen content dissolved in Pb–Bi, corrosion proceeds by oxidation of the steel. These two corrosion processes have been experimentally and theoretically studied in CEA Saclay and also by other partners, leading to some corrosion modeling in order to predict the life duration of these materials as well as their limits of utilization. This study takes into account the two kinds of corrosion processes: dissolution and oxidation. In these two different processes, the lead alloy physico-chemical parameters are considered: the temperature and the liquid alloy velocity for both processes and the oxygen concentration for oxidation.

1.
Balbaud-Célérier
,
F.
, and
Terlain
,
A.
, 2004, “
Influence of the Pb-Bi Hydrodynamics on the Corrosion of T91 Martensitic Steel and Pure Iron
,”
J. Nucl. Mater.
0022-3115,
335
, pp.
204
209
.
2.
Balbaud-Célérier
,
F.
, and
Barbier
,
F.
, 2001, “
Investigation of Models to Predict the Corrosion of Steels in Flowing Liquid Lead Alloys
,”
J. Nucl. Mater.
0022-3115,
289
, pp.
227
242
.
3.
Eisenberg
,
M.
,
Tobias
,
C. W.
, and
Wilke
,
C. R.
, 1954, “
Ionic Mass Transfer and Concentration Polarization at Rotating Electrodes
,”
J. Electrochem. Soc.
0013-4651,
101
, pp.
306
320
.
4.
Chen
,
T. Y.
,
Moccari
,
A. A.
, and
Macdonald
,
D. D.
, 1992, “
Development of Controlled Hydrodynamic Techniques for Corrosion Testing
,”
Corrosion
0010-9312,
48
, pp.
239
255
.
5.
Martynov
,
P. N.
, and
Ivanov
,
K. D.
, “
Nuclear Heat Application: Design Aspect and Operating Experiments
,”
Proceedings of the Four Technical Meetings Held Between Dec. 1995 and Apr. 1998
, pp.
177–184
.
6.
Nuclear Energy Agency
, 2007,
Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies
,
Nuclear Energy Agency
,
Issy-Les-Moulineaux
, p.
106
.
7.
Robertson
,
W. M.
, 1968, “
Diffusion of Cobalt and Iron in Liquid Lead Measured by Grain Boundary Grooving
,”
Trans. Metall. Soc. AIME
0543-5722,
242
, pp.
2139
2142
.
8.
1954,
Liquid Metal Handbook
, 2nd ed.,
R. N.
Lyon
, ed.,
Atomic Energy Commission
,
Washington, DC
.
9.
Nuclear Energy Agency
, 2007,
Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies
,
Nuclear Energy Agency
,
Issy-Les-Moulineaux
, p.
76
.
10.
Martinelli
,
L.
,
Balbaud-Célérier
,
F.
,
Terlain
,
A.
,
Bosonnet
,
S.
,
Picard
,
G.
, and
Santarini
,
G.
, 2008, “
Oxidation Mechanism of an Fe-9Cr-1Mo Steel by Liquid Pb–Bi Eutectic Alloy at 470°C (Part II)
,”
Corros. Sci.
0010-938X,
50
, pp.
2537
2548
.
11.
Martinelli
,
L.
,
Balbaud-Célérier
,
F.
,
Picard
,
G.
, and
Santarini
,
G.
, 2008, “
Oxidation Mechanism of an Fe-9Cr-1Mo Steel by Liquid Pb–Bi Eutectic Alloy (Part III)
,”
Corros. Sci.
0010-938X,
50
, pp.
2549
2559
.
12.
Fazio
,
C.
,
Benamati
,
G.
,
Martini
,
C.
, and
Palombarini
,
G.
, 2001, “
Compatibility Tests on Steels in Molten Lead and Lead–Bismuth
,”
J. Nucl. Mater.
0022-3115,
296
, pp.
243
248
.
13.
Benamati
,
G.
,
Fazio
,
C.
,
Piankova
,
H.
, and
Rusanov
,
A.
, 2002, “
Temperature Effect on the Corrosion Mechanism of Austenitic and Martensitic Steels in Lead–Bismuth
,”
J. Nucl. Mater.
0022-3115,
301
, pp.
23
27
.
14.
Müller
,
G.
,
Schumacher
,
G.
, and
Zimmermann
,
F.
, 2000, “
Investigation on Oxygen Controlled Liquid Lead Corrosion of Surface Treated Steels
,”
J. Nucl. Mater.
0022-3115,
278
, pp.
85
95
.
15.
Müller
,
G.
,
Weisenburger
,
A.
,
Heinzel
,
A.
,
Konys
,
J.
,
Schumacher
,
G.
,
Zimmermann
,
F.
,
Rusanov
,
A.
,
Engelko
,
V.
, and
Martkov
,
V.
, 2004, “
Behavior of Steels in Flowing Liquid Pb-Bi Eutectic Alloy at 420–600 C After 4000–7200 h
,”
J. Nucl. Mater.
0022-3115,
335
, pp.
163
168
.
16.
Barbier
,
F.
, and
Rusanov
,
A.
, 2001, “
Corrosion Behavior of Steels in Flowing Lead–Bismuth
,”
J. Nucl. Mater.
0022-3115,
296
, pp.
231
236
.
17.
Balbaud-Célérier
,
F.
,
Deloffre
,
Ph.
,
Terlain
,
A.
, and
Rusanov
,
A.
, 2002, “
Corrosion of Metallic Materials in Flowing Liquid Lead-Bismuth
,”
J. Phys. IV
1155-4339,
12
, pp.
177
190
.
18.
Balbaud-Celerier
,
F.
,
Martinelli
,
L.
,
Terlain
,
A.
,
N’Gomsik
,
A.
,
Sanchez
,
S.
, and
Picard
,
G.
, 2004, “
High Temperature Corrosion of Steels in Liquid Pb-Bi Alloy
,”
Mater. Sci. Forum
0255-5476,
461–464
, pp.
1091
1098
.
19.
Martinelli
,
L.
,
Dufrenoy
,
T.
,
Jaakou
,
K.
,
Rusanov
,
A.
, and
Balbaud-Célérier
,
F.
, 2008, “
High Temperature Oxidation of Fe-9Cr-1Mo Steel in Stagnant Liquid Lead-Bismuth at Several Temperatures and for Different Lead Contents in the Liquid Alloy
,”
J. Nucl. Mater.
0022-3115,
376
, pp.
282
288
.
20.
Gromov
,
B. F.
,
Orlov
,
Y. I.
,
Martynov
,
P. N.
, and
Gulevsky
,
V. A.
, 1998, “
The Problems of Technology of the Heavy Liquid Metal Coolants
,”
Proceedings of the Heavy Liquid Metal Coolants in Nuclear Technology Conference
, Obninsk, Russian Federation, Oct. 5–9, pp.
87
100
.
21.
Outokumpu
, 1999,
HSC CHEMISTRY for Windows Version 4.0 Chemical Reaction and Equilibrium Software With Extensive Thermochemical Database
,
Outokumpu
,
Pori, Finland
.
22.
Backhaus-Ricoult
,
M.
, and
Dieckmann
,
R.
, 1986, “
Defects and Cation Diffusion in Magnetite (VII): Diffusion Controlled Formation of Magnetite During Reactions in the Iron-Oxygen System
,”
Ber. Bunsenges. Phys. Chem.
0005-9021,
90
, pp.
690
698
.
23.
Töpfer
,
J.
,
Aggarwal
,
S.
, and
Dieckmann
,
R.
, 1995, “
Point Defects and Cation Tracer Diffusion in (CrxFe1−x)3−δO4 Spinels
,”
Solid State Ionics
0167-2738,
81
, pp.
251
266
.
24.
Atkinson
,
A.
,
O'Dwyer
,
M. L.
, and
Taylor
,
R. I.
, 1983, “
Fe55 Diffusion in Magnetite Crystals at 500°C and its Relevance to Oxidation of Iron
,”
J. Mater. Sci.
0022-2461,
18
, pp.
2371
2379
.
25.
Yeliseyeva
,
O.
,
Tsisar
,
V.
, and
Benamati
,
G.
, 2008, “
Influence of Temperature on the Interaction Mode of T91 and AISI 316L Steels With Pb–Bi Melt Saturated by Oxygen
,”
Corros. Sci.
0010-938X,
50
, pp.
1672
1683
.
26.
Steiner
,
H.
,
Schroer
,
C.
,
Voß
,
Z.
,
Wedemeyer
,
O.
, and
Konys
,
J.
, 2008, “
Modeling of Oxidation of Structural Materials in LBE Systems
,”
J. Nucl. Mater.
0022-3115,
374
, pp.
211
219
.
27.
Nuclear Energy Agency
, 2007,
Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies
,
Nuclear Energy Agency
,
Issy-Les-Moulineaux
, Chap. 6.
You do not currently have access to this content.