A thickened-flame (TF) modeling approach is combined with a large eddy simulation (LES) methodology to model premixed combustion, and the accuracy of these model predictions is evaluated by comparing with the piloted premixed stoichiometric methane-air flame data of Chen et al. (1996, “The Detailed Flame Structure of Highly Stretched Turbulent Premixed Methane-Air Flames,” Combust. Flame, 107, pp. 233–244) at a Reynolds number Re=24,000. In the TF model, the flame front is artificially thickened to resolve it on the computational LES grid and the reaction rates are specified using reduced chemistry. The response of the thickened-flame to turbulence is taken care of by incorporating an efficiency function in the governing equations. The efficiency function depends on the characteristics of the local turbulence and on the characteristics of the premixed flame such as laminar flame speed and thickness. Three variants of the TF model are examined: the original thickened-flame model, the power-law flame-wrinkling model, and the dynamically modified TF model. Reasonable agreement is found when comparing predictions with the experimental data and with computations reported using a probability distribution function modeling approach. The results of the TF model are in better agreement with data when compared with the predictions of the G-equation approach.

1.
Poinsot
,
T.
, and
Veynante
,
D.
, 2001,
Theoretical and Numerical Combustion
,
Edwards
,
Ann Arbor, MI
.
2.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
, 2000, “
A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion
,”
Phys. Fluids
1070-6631,
12
(
7
), pp.
1843
1863
.
3.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
, 2002, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
0010-2180,
131
, pp.
159
180
.
4.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
, 2002, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part II: Dynamic Formulation
,”
Combust. Flame
0010-2180,
131
, pp.
181
197
.
5.
Durand
,
L.
, and
Polifke
,
W.
, 2007, “
Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver
,” ASME Paper No. GT2007-28188.
6.
Chen
,
Y. C.
,
Peters
,
N.
,
Schneemann
,
G. A.
,
Wruck
,
N.
,
Renz
,
U.
, and
Mansour
,
M. S.
, 1996, “
The Detailed Flame Structure of Highly Stretched Turbulent Premixed Methane-Air Flames
,”
Combust. Flame
,
107
, pp.
233
244
. 0010-2180
7.
Lindstedt
,
R. P.
, and
Vaos
,
E. M.
, 2006, “
Transported PDF Modeling of High-Reynolds-Number Premixed Turbulent Flames
,”
Combust. Flame
,
145
, pp.
495
511
. 0010-2180
8.
Duchamp de La Geneste
,
L.
, and
Pitsch
,
H.
, 2000, “
A Level-Set Approach to Large-Eddy Simulation of Premixed Turbulent Combustion
,”
Annual Research Briefs
,
CTR
,
Stanford
, pp.
105
116
.
9.
Jordan
,
S. A.
, 1999, “
A Large-Eddy Simulation Methodology in Generalized Curvilinear Coordinates
,”
J. Comput. Phys.
0021-9991,
148
, pp.
322
340
.
10.
Jordan
,
S. A.
, 2001, “
Dynamic Subgrid-Scale Modeling for Large-Eddy Simulations in Complex Topologies
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
619
627
.
11.
Tafti
,
D. K.
, 2005, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
92
104
.
12.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
165
.
13.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
1760
1765
.
14.
Peters
,
N.
, 2000,
Turbulent Combustion
,
Cambridge University Press
,
London
.
15.
Pitsch
,
H.
, and
Duchamp de La Geneste
,
L.
, 2002, “
Large-Eddy Simulation of a Premixed Turbulent Combustion Using Level-Set Approach
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
2001
2008
.
16.
Pope
,
S. B.
, 1985, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
0360-1285,
11
, pp.
119
192
.
17.
Butler
,
T. D.
, and
O’Rourke
,
P. J.
, 1977, “
A Numerical Method for Two-Dimensional Unsteady Reacting Flows
,”
Proc. Combust. Inst.
,
16
, pp.
1503
1515
. 1540-7489
18.
Kuo
,
K. K.
, 2005,
Principles of Combustion
, 2nd ed.,
Wiley
,
New York
.
19.
Williams
,
F. A.
, 1985,
Combustion Theory
,
Benjamin/Cummins
,
Menlo Park, CA
.
20.
Legier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
, 2000, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Summer Program
,
Center for Turbulent Research, Stanford University
,
Stanford, CA
, pp.
157
168
.
21.
Tuffin
,
K.
,
Varoquié
,
B.
, and
Poinsot
,
T.
, 2003, “
Measurements of Transfer Functions in Reacting Flows Using Large Eddy Simulations
,”
Tenth International Congress on Sound and Vibration
, pp.
785
793
.
22.
Kim
,
N. I.
, and
Maruta
,
K.
, 2006, “
A Numerical Study on Propagation of Premixed Flames in Small Tubes
,”
Combust. Flame
,
146
, pp.
283
301
. 0010-2180
23.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
, 2004, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
0010-2180,
137
, pp.
489
505
.
24.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1989, “
Chemkin-II: A Fortran Chemical Kinetics Package for Analysis of Gas-Phase Chemical Kinetics
,” Sandia National Laboratories, Report No. SAND 89-8009B.
25.
Kee
,
R. J.
,
Dixon-Lewis
,
G.
,
Warnatz
,
J.
,
Coltrin
,
M. E.
, and
Miller
,
J. A.
, 1986, Sandia National Laboratories, Technical Report No. SAND86-8246 (TRANFIT).
26.
Weiss
,
J. M.
, and
Smith
,
W. A.
, 1995, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
0001-1452,
33
, pp.
2050
2057
.
27.
Edwards
,
J. R.
, 1997, “
A Low-Diffusion Flux-Splitting Scheme for Navier-Stokes Calculations
,”
Comput. Fluids
0045-7930,
26
, pp.
635
659
.
28.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
, 2001, “
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
359
371
.
29.
Akselvoll
,
K.
, and
Moin
,
P.
, 1996, “
Large-Eddy Simulation of Turbulent Confined Coannular Jets
,”
J. Fluid Mech.
0022-1120,
315
, pp.
387
411
.
30.
Herrmann
,
M.
, 2006, “
Numerical Simulation of Turbulent Bunsen Flames With a Level Set Flamelet Model
,”
Combust. Flame
,
145
, pp.
357
375
. 0010-2180
You do not currently have access to this content.