Partially premixed combustion occurs in many combustion devices of practical interest, such as gas-turbine combustors. Development of corresponding turbulent combustion models is important to improve the design of these systems in efforts to reduce fuel consumption and pollutant emissions. Turbulent lifted flames have been a canonical problem for testing models designed for partially premixed turbulent combustion. In this paper we propose modifications to the coherent flame model so that it can be brought to the simulation of partially premixed combustion. For the primary premixed flame, a transport equation for flame area density is solved in which the wrinkling effects of the flame stretch and flame annihilation are considered. For the subsequent nonpremixed zone, a laminar flamelet presumed probability density function (PPDF) methodology, which accounts for the nonequilibrium and finite-rate chemistry effects, is adopted. The model is validated against the experimental data on a lifted H2N2 jet flame issuing into a vitiated coflow. In general there is fairly good agreement between the calculations and measurements both in profile shapes and peak values. Based on the simulation results, the flame stabilization mechanism for lifted flames is investigated.

1.
Peters
,
N.
, 2000,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
2.
Vanquickenborne
,
L.
, and
Tiggelen
,
A. V.
, 1966, “
The Stabilization Mechanism of Lifted Diffusion Flames
,”
Combust. Flame
0010-2180,
10
, pp.
59
69
.
3.
Eikhoff
,
H.
,
Lenze
,
B.
, and
Leukel
,
W.
, 1984, “
Experimental Investigation on the Stabilization Mechanism of Jet Diffusion Flames
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
20
, pp.
311
318
.
4.
Peters
,
N.
, and
Williams
,
F. A.
, 1983, “
Liftoff Characteristics of Turbulent Jet Diffusion Flames
,”
AIAA J.
0001-1452,
21
, pp.
423
429
.
5.
Pitts
,
W. M.
, 1988, “
Assessment of Theories for the Behavior and Blowout of Lifted Turbulent Jet Diffusion Flames
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
22
, pp.
809
816
.
6.
Poinsot
,
T.
, and
Veynante
,
D.
, 2001,
Theoretical and Numerical Combustion
,
Edwards
,
Philadelphia, PA
.
7.
Poinsot
,
T.
,
Veynante
,
D.
,
Trouve
,
A.
, and
Ruetsch
,
G.
, 1996, “
Turbulent Flame Propagation in Partially Premixed Ames
,”
Proceedings of the Summer Program
, Center for Turbulence Research, pp.
111
141
.
8.
Helie
,
J.
, and
Trouve
,
A.
, 1998, “
Turbulent Flame Propagation in Partially Premixed Combustion
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
27
, pp.
891
898
.
9.
Haworth
,
D. C.
,
Blint
,
R. J.
,
Cuenot
,
B.
, and
Poinsot
,
T.
, 2000, “
Numerical Simulation of Turbulent PropaneÂcair Combustion With Nonhomogeneous Reactants
,”
Combust. Flame
0010-2180,
121
, pp.
395
417
.
10.
Helie
,
J.
, and
Trouve
,
A.
, 2000,
Proc. Combust. Inst.
1540-7489,
28
, pp.
193
201
.
11.
Bondi
,
S.
, and
Jones
,
W. P.
, 2002, “
A Combustion Model for Premixed Flames With Varying Stoichiometry
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
2123
2129
.
12.
Pope
,
S. B.
, 1988, “
The Evolution of Surfaces in Turbulence
,”
Int. J. Eng. Sci.
0020-7225,
26
, pp.
445
469
.
13.
Candel
,
S. M.
, and
Poinsot
,
T.
, 1990, “
Flame Stretch and the Balance Equation for the Flame Area
,”
Combust. Sci. Technol.
0010-2202,
70
, pp.
1
15
.
14.
Trouve
,
A.
, 1992, “
The Evolution Equation for the Flame Surface Density
,” Center for Turbulence Research Annual Research Briefs, pp.
393
409
.
15.
Duclos
,
J. M.
,
Veynante
,
D.
, and
Poinsot
,
T.
, 1993, “
A Comparison of Flamelet Models for Premixed Turbulent Combustion
,”
Combust. Flame
0010-2180,
95
, pp.
101
118
.
16.
Choi
,
C. R.
, and
Huh
,
K. Y.
, 1998, “
Development and Validation of a Coherent Flamelet Model for a Spark-Ignited Turbulent Premixed Flame in a Closed Vessel
,”
Combust. Flame
0010-2180,
114
, pp.
336
348
.
17.
Meneveau
,
C.
and
Poinsot
,
T.
, 1991, “
Stretching and Quenching of Flamelets in Premixed Turbulent Combustion
,”
Combust. Flame
0010-2180,
86
, pp.
311
332
.
18.
Smoot
,
D.
, and
Smith
,
P.
, 1985,
Coal Combustion and Gasification
,
Plenum
,
New York
.
20.
Cabra
,
R.
,
Myhrvold
,
T.
,
Chen
,
J. Y.
, and
Dibble
,
R. W.
, 2002, “
Simultaneous Laser Raman-Rayleigh-Lif Measurements and Numerical Modeling Results of a Lifted Turbulent H2∕N2 Jet Flame in a Vitiated Coflow
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1881
1887
.
23.
Mauss
,
F.
, 1998, “
Entwicklung eines kinetischen Modells der Russbildung mit schneller Polymerisation
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
24.
Warnatz
,
J.
, 1979, “
Combustion Chemistry
,”
Ber. Bunsenges. Phys. Chem.
0005-9021
83
, pp.
950
957
.
25.
Masri
,
A. R.
,
Cao
,
R.
,
Pope
,
S. B.
, and
Goldin
,
G. M.
, 2004, “
PDF Calculations of Turbulent Lifted Flames of H2∕N2 Issuing Into a Vitiated Co-Flow
,”
Combust. Theory Modell.
1364-7830,
8
, pp.
1
22
.
26.
Prasad
,
R. O. S.
, and
Gore
,
J. P.
, 1999, “
An Evaluation of Flame Surface Density Models for Turbulent Premixed Jet Flames
,”
Combust. Flame
0010-2180,
116
, pp.
1
14
.
You do not currently have access to this content.