A numerical investigation of the transient development of flame and soot distributions in a laminar axisymmetric coflowing diffusion flame of methane in air has been carried out considering the air preheating effect. The gas phase conservation equations of mass, momentum, energy, and species concentrations along with the conservation equations of soot mass concentration and number density are solved simultaneously, with appropriate boundary conditions, by an explicit finite difference method. Average soot diameters are then calculated from these results. It is observed that the soot is formed in the flame when the temperature exceeds 1300 K. The contribution of surface growth toward soot formation is more significant compared with that of nucleation. Once the soot particles reach the high temperature oxygen-enriched zone beyond the flame, the soot oxidation becomes important. During the initial period, when soot oxidation is not contributing significantly, some of the soot particles escape into the atmosphere. However, under steady condition the exhaust product gas is nonsooty. Preheating of air increases the soot volume fraction significantly. This is both due to more number of soot particles and the increase in the average diameter. However, preheating of air does not cause a qualitative difference in the development of the soot-laden zone during the flame transient period.

1.
Wey
,
C.
,
Powell
,
E. A.
, and
Jagoda
,
J. I.
, 1984, “
The Effect of Temperature on the Sooting Behaviour of Laminar Diffusion Flames
,”
Combust. Sci. Technol.
0010-2202,
41
, pp.
173
190
.
2.
Santoro
,
R. J.
,
Yeh
,
T. T.
,
Horvathand
,
J. J.
, and
Semerjian
,
H. G.
, 1987, “
The Transport and Growth of Soot Particles in Laminar Diffusion Flames
,”
Combust. Sci. Technol.
0010-2202,
53
, pp.
89
115
.
3.
Smooke
,
M. D.
,
McEnally
,
C. S.
,
Pfefferle
,
L. D.
,
Hall
,
R. J.
, and
Colket
,
M. B.
, 1999, “
Computational and Experimental Study of Soot Formation in a Coflow, Laminar Diffusion Flame
,”
Combust. Flame
0010-2180,
117
, pp.
117
139
.
4.
Lee
,
K. O.
,
Megaridis
,
C. M.
,
Zelepouga
,
S.
,
Saveliev
,
A. V.
,
Kennedy
,
L. A.
,
Charon
,
O.
, and
Ammouri
,
F.
, 2000, “
Soot Formation Effects of Oxygen Concentration in the Oxidizer Stream of Laminar Co-Annular Non-Premixed Methane/Air Flames
,”
Combust. Flame
,
121
, pp.
323
333
. 0010-2180
5.
Xu
,
F.
,
El-Leathy
,
A. M.
,
Kin
,
C. H.
, and
Faeth
,
G. M.
, 2003, “
Soot Surface Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure
,”
Combust. Flame
,
132
, pp.
43
57
. 0010-2180
6.
Smith
,
G. M.
, 1982, “
A Simple Nucleation/Depletion Model for the Spherule Size of Particulate Carbon
,”
Combust. Flame
,
48
, pp.
265
272
. 0010-2180
7.
Gore
,
J. P.
, and
Faeth
,
G. M.
, 1986, “
Structure and Spectral Radiation Properties of Turbulent Ethylene/Air Diffusion Flames
,”
Proc. Combust. Inst.
,
21
, pp.
1521
1531
. 1540-7489
8.
Kennedy
,
I. M.
,
Kollmann
,
W.
, and
Chen
,
J. Y.
, 1990, “
A Model for the Soot Formation in Laminar Diffusion Flame
,”
Combust. Flame
0010-2180,
81
, pp.
73
85
.
9.
Leung
,
K. M.
,
Lindstedt
,
R. P.
, and
Jones
,
W. P.
, 1991, “
A Simplified Reaction Mechanism for Soot Formation in Non-Premixed Flames
,”
Combust. Flame
0010-2180,
87
, pp.
289
305
.
10.
Syed
,
K. J.
,
Stewart
,
C. D.
, and
Moss
,
J. B.
, 1990, “
Modelling Soot Formation and Thermal Radiation in Buoyant Turbulent Diffusion Flames
,”
Proc. Combust. Inst.
,
23
, pp.
1533
1539
. 1540-7489
11.
Moss
,
J. B.
,
Stewart
,
C. D.
, and
Young
,
K. J.
, 1995, “
Modelling Soot Formation and Burnout in a High Temperature Laminar Diffusion Flame Burning Under Oxygen-Enriched Conditions
,”
Combust. Flame
0010-2180,
101
, pp.
491
500
.
12.
Said
,
R.
,
Garo
,
A.
, and
Borghi
,
R.
, 1997, “
Soot Formation Modeling for Turbulent Flames
,”
Combust. Flame
0010-2180,
108
, pp.
71
86
.
13.
Lee
,
K. B.
,
Thring
,
M. W.
, and
Beer
,
J. M.
, 1962, “
On the Rate of Combustion of Soot in a Laminar Soot Flame
,”
Combust. Flame
0010-2180,
6
, pp.
137
145
.
14.
Nagle
,
J.
, and
Strickland-Constable
,
R. F.
, 1962,
Fifth Carbon Conference
, Vol.
1
, pp.
154
164
.
15.
Najjar
,
Y. S. H.
, and
Goodger
,
E. M.
, 1981, “
Soot Oxidation in Gas Turbines Using Heavy Fuels. 2
,”
Fuel
,
60
, pp.
987
990
. 0016-2361
16.
Mandal
,
B. K.
,
Datta
,
A.
, and
Sarkar
,
A.
, 2005, “
Transient Development of Methane-Air Diffusion Flame in a Confined Geometry With and Without Air-Preheat
,”
Int. J. Energy Res.
,
29
, pp.
145
176
. 0363-907X
17.
Mitchell
,
R. E.
,
Sarofim
,
A. F.
, and
Clomburg
,
L. A.
, 1980, “
Experimental and Numerical Investigation of Confined Laminar Diffusion Flames
,”
Combust. Flame
0010-2180,
37
, pp.
227
244
.
18.
DuPont
,
V.
,
Pourkashanian
,
M.
, and
Williams
,
A.
, 1993, “
Modelling of Process Heaters Fired by Natural Gas
,”
J. Inst. Energy
0144-2600,
73
, pp.
20
29
.
19.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
, 1988,
The Properties of Gases & Liquids
,
McGraw-Hill
,
New York
.
20.
Hirt
,
C. W.
, and
Cook
,
J. L.
, 1972, “
Calculating Three-Dimensional Flows Around Structures and Over Rough Terrain
,”
J. Comput. Phys.
0021-9991,
10
, pp.
324
338
.
You do not currently have access to this content.