Thermal barrier coatings (TBCs) have been recently introduced to hot section components, such as transition pieces and the first two stages of turbine blades and vanes of advanced F, G, and H class land-based turbine engines. The TBC is typically applied on metallic-coated components. The metallic bond coat provides oxidation and/or corrosion protection. It is generally believed that the primary failure mode of TBCs is delamination and fracture of the top ceramic coating parallel to the bond coat in the proximity of the thermally grown oxide (TGO) between coatings. One of the concerns associated with the use of a TBC as a prime reliant coating is its long-term stability. The effect of long-term operation at typical land based turbine operating temperatures of below 1010°C (1850°F) of the failure mode of TBCs is unknown. Long-term isothermal tests were conducted on the thermal barrier-coated specimens at three temperatures, 1010°C (1850°F), 1038°C (1900°F), and 1066°C (1950°F), to determine the effects of long term exposure on the TBC failure location (mode). Following the isothermal testing, the samples were destructively examined to characterize the degradation of the TBC and determine the extent of TGO cracking, TGO growth, bond coat oxidation, and TBC failure location after long term exposure for up to 18,000h. Optical microscopy and a scanning electron microscope (SEM) attached with an energy dispersive spectroscopy (EDS) system were used to study the degradation of the TBC and bond coatings. The results showed that long term isothermal exposure leads to a change in the TBC failure mode from the delamination of the TBC at the TGOTBC interface to the internal oxidation of the bond coat and bond coat delamination. In this paper, the effect of long-term exposure on the delamination of TBC and the bond coat failure mode is discussed.

1.
Stecura
,
S.
, 1985, NASA Tech. Memo No. 86905, NASA, Cleveland, OH.
2.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
, 2002, “
Thermal Barrier Coatings for Gas Turbine Engine Applications
,”
Science
0036-8075,
296
, pp.
280
284
.
3.
Bose
,
S.
, and
Demasi-Marcin
,
J.
, 1995, “
Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt and Whitney
,” Thermal Barrier Coating Workshop, NASA Paper No. CP 3312 63.
4.
Wortman
,
D. J.
,
Nagaraj
,
B. A.
, and
Duderstadt
,
E. C.
, 1989, “
Thermal Barrier Coatings for Gas Turbine Use
,”
Mater. Sci. Eng., A
0921-5093,
A121
, pp.
433
440
.
5.
Miller
,
R. A.
, 1987, “
Current Status of Thermal Barrier Coatings—An Overview
,”
Surf. Coat. Technol.
0257-8972,
30
, pp.
1
11
.
6.
Meier
,
S. M.
,
Nissley
,
D. M.
,
Sheffler
,
K. D.
, and
Bose
,
S.
, 1992, “
Thermal Barrier Coating Life Prediction Model Development
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
114
, pp.
259
267
.
7.
Cheruvu
,
N. S.
,
Chan
,
K. S.
, and
Viswanathan
,
R.
, 2006, “
Evaluation, Degradation, and Life Assessment of Coatings for Land-Based Combustion Turbines
,”
Energy Materials
,
1
(
1
), pp.
33
47
.
8.
Miller
,
R. A.
, 1984, “
Oxidation Based Model for Thermal Barrier Coating Life
,”
J. Am. Ceram. Soc.
0002-7820,
67
(
8
), pp.
517
521
.
9.
Miller
,
R. A.
, 1987, “
Progress Towards Life Modeling of Thermal Barrier Coatings for Aircraft Gas Turbine Engines
,” ASME Paper No. 87-ICE-18.
10.
Stangman
,
T. E.
,
Liu
,
A.
, and
Neumann
,
J.
, 1987, “
Thermal Barrier Coating Life-Prediction Model Development
,” NASA Report No. CR-179648.
11.
DeMasi
,
J. T.
,
Sheffler
,
K. D.
, and
Ortiz
,
M.
, 1989, “
Thermal Barrier Coating Life Prediction Model Development—Phase I
,” NASA Report No. CR-182230.
12.
Brindley
,
W. J.
, 1995,
Proceedings of TBC Workshop
, NASA Report No. CP 3312, pp.
189
202
.
13.
Chang
,
G. C.
,
Phucharoen
,
W.
, and
Miller
,
R. A.
, 1987, “
Thermal Expansion Mismatch and Plasticity in Thermal Barrier Coating
,” NASA Report No. CP-2493.
14.
Cruse
,
T. A.
,
Stewart
,
S. E.
, and
Ortiz
,
M.
, 1988, “
Thermal Barrier Coating Life Prediction Model Development
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
110
, pp.
610
616
.
15.
Yanar
,
N. M.
,
Kim
,
G. M.
,
Pettit
,
F. S.
, and
Memer
,
G. H.
, 2002,
Turbine Forum, Forum of Technology International Conferences on Advanced Coatings for High Temperature
,
Nice, France
, Apr. 17–19.
16.
Meier
,
S. M.
,
Nissley
,
D. M.
, and
Sheffler
,
K. D.
, 1991, “
Thermal Barrier Coating Life Prediction Model Development—Phase II
,” Report No. NASA CR-189111.
17.
Meier
,
S. M.
,
Nissley
,
D. M.
,
Sheffler
,
K. D.
, and
Cruse
,
T. A.
, 1991, “
Thermal Barrier Coating Life Prediction Model Development
,” ASME Paper No. 91-GT-40.
18.
Chan
,
K. S.
,
Cheruvu
,
N. S.
, and
Viswanathan
,
R.
, 2003, “
Development of a Thermal Barrier Coating Life Model
,” ASME Paper No. GT2003-38171.
19.
Cheruvu
,
N. S.
, and
Leverant
,
G. R.
, 1998, “
Influence of Metal Temperature on Base Material and Coating Degradation of GTD-111 Buckets
,”
ASME International Gas Turbine and Aero Engine Congress and Exhibition
,
Stockholm, Sweden
, Jun., Paper No. 98-GT-5111.
20.
Cheruvu
,
N. S.
,
Swaminathan
,
V. P.
, and
Kinney
,
C. D.
, 1999, “
Recovery of Microstructure and Mechanical Properties of Service Run GTD-111DS Buckets
,” ASME Paper No. 99-GT-425.
21.
Haynes
,
J. A.
,
Ferber
,
M. K.
,
Porter
,
W. D.
, and
Rigney
,
E. D.
, 1999, “
Characterization of Alumina Scales Formed During Isothermal and Cyclic Oxidation of Plasma-Sprayed TBC Systems at 1150°C
,”
Oxid. Met.
0030-770X,
52
, pp.
31
76
.
22.
Haynes
,
J. A.
,
Ferber
,
M. K.
, and
Porter
,
W. D.
, 2000, “
Thermal Cycling Behavior of Plasma-Sprayed Thermal Barrier Coatings With Various MCrATx Bond Coats
,”
J. Therm. Spray Technol.
1059-9630,
9
, pp.
38
48
.
23.
Haynes
,
J. A.
,
Ferber
,
M. K.
,
Porter
,
W. D.
, and
Rigney
,
E. D.
, 1996, “
Isothermal and Cyclic Oxidation of an Air Plasma-Sprayed Thermal Barrier Coating System
,” ASME Paper No. 96-GT-286.
24.
Chan
,
K. S.
, and
Cheruvu
,
N. S.
, 2004, “
Degradation Mechanism Characterization and Remaining Life Prediction for NiCoCrAlY Coatings
,” ASME Paper No. GT2004-53383.
25.
Cheruvu
,
N. S.
, and
Chan
,
K. S.
,2004, “
Combustion Turbine (CT) Hot Section Coating Life Management
,” EPRI Report No. 18.05112.
26.
Stiger
,
M. J.
,
Yanar
,
N. M.
,
Topping
,
M. G.
,
Petitt
,
F. S.
, and
Meier
,
G. H.
, 1999, “
Thermal Barrier Coatings for 21st Century
,”
Z. Metallkd.
0044-3093,
90
, pp.
1069
1078
.
27.
Steiger
,
M. J.
,
Yanar
,
N. M.
,
Petitt
,
F. S.
, and
Meier
,
G. H.
, 1999, “
Mechanism for the Failure of Electron Beam Physical Vapor DepositedThermal Barrier Coatings Induced by High Temperature Oxidation
,”
Elevated Temperature Coatings: Science and Technology TMS
,
J. M.
Hampikian
and
N. B.
Dahotre
, eds.,
TMS
,
Warrendale, PA
, Feb. 1, pp.
51
62
.
You do not currently have access to this content.