This paper presents a computational investigation of the effect of exhaust temperature modulations on an automotive catalytic converter. The objective is to develop a better fundamental understanding of the converter’s performance under transient driving conditions. Such an understanding will be beneficial in devising improved emission control methodologies. The study employs a single-channel based, one-dimensional, nonadiabatic model. The transient conditions are imposed by varying the exhaust gas temperature sinusoidally. The results show that temperature modulations cause a significant departure in the catalyst behavior from its steady behavior, and modulations have both favorable and harmful effects on pollutant conversion. The operating conditions and the modulating gas composition and flow rates (space velocity) have substantial influence on catalyst behavior.

1.
Silveston
,
P. L.
, 1995, “
Automotive Exhaust Catalysis Under Periodic Operation
,”
Catal. Today
0920-5861,
25
, pp.
175
195
.
2.
Herz
,
R. K.
, 1987, “
Dynamic Behavior of Automotive Three-Way Emission Control System
,”
Catalysis and Automotive Pollution Control
,
Elsevier
,
Amsterdam
, pp.
427
444
.
3.
Herz
,
R. K.
, 1981, “
Dynamic Behavior of Automotive Catalysts: 1. Catalyst Oxidation and Reduction
,”
Ind. Eng. Chem. Prod. Res. Dev.
0196-4321,
20
, pp.
451
457
.
4.
Silveston
,
P. L.
, 1996, “
Automotive Exhaust Catalysis: Is Periodic Operation Beneficial?
,”
Chem. Eng. Sci.
0009-2509,
51
, pp.
2419
2426
.
5.
Koltsakis
,
G. C.
, and
Stamatelos
,
A. M.
, 1999, “
Dynamic Behavior Issues in Three-Way Catalyst Modeling
,”
AIChE J.
0001-1541,
45
, pp.
603
614
.
6.
Van Neer
,
F. J. R.
,
Kodde
,
A. J.
,
Den Uil
,
H.
, and
Bliek
,
A.
, 1996, “
Understanding of Resonance Phenomena on a Catalyst Under Forced Concentration and Temperature Oscillations
,”
Can. J. Chem. Eng.
0008-4034,
74
, pp.
664
673
.
7.
Brandner
,
J. J.
,
Emig
,
G.
,
Liauw
,
M. A.
, and
Schubert
,
K.
, 2004, “
Fast Temperature Cycling in Microstructure Devices
,”
Chem. Eng. J.
0300-9467,
101
, pp.
217
224
.
8.
Silveston
,
P. L.
, and
Hudgins
,
R. R.
, 2004, “
Periodic Temperature Forcing of Catalytic Reactions
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
4043
4053
.
9.
Shamim
,
T.
,
Shen
,
H.
,
Sengupta
,
S.
,
Son
,
S.
, and
Adamczyk
,
A. A.
, 2002, “
A Comprehensive Model to Predict Three-Way Catalytic Converter Performance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
421
428
.
10.
Montreuil
,
C. N.
,
Williams
,
S. C.
, and
Adamczyk
,
A. A.
, 1992, “
Modeling Current Generation Catalytic Converters: Laboratory Experiments and Kinetic Parameter Optimization—Steady State Kinetics
,” SAE Paper No. 920096.
11.
Shamim
,
T.
, and
Medisetty
,
V. C.
, 2003, “
Dynamic Response of Automotive Catalytic Converters to Variations in Air-Fuel Ratio
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
547
554
.
12.
Shamim
,
T.
, 2005, “
Dynamic Behavior of Automotive Catalytic Converters Subjected to Variations in Engine Exhaust Compositions
,”
Int. J. Engine Res.
,
6
, pp.
557
568
.
13.
Shamim
,
T.
, 2005, “
The Effect of Space Velocity on the Dynamic Characteristics of an Automotive Catalytic Converter
,”
SAE Trans.
0096-736X,
114
(
4
), pp.
974
982
.
You do not currently have access to this content.