This paper addresses the impact of fuel composition on the operability of lean premixed gas turbine combustors. This is an issue of current importance due to variability in the composition of natural gas fuel supplies and interest in the use of syngas fuels. This paper reviews available results and current understanding of the effects of fuel composition on combustor blowout, flashback, dynamic stability, and autoignition. It summarizes the underlying processes that must be considered when evaluating how a given combustor’s operability will be affected as fuel composition is varied.

1.
Richards
,
G. A.
,
McMillian
,
M. M.
,
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Cully
,
S. R.
, 2001, “
Issues for Low-Emission, Fuel-Flexible Power System
,”
Prog. Energy Combust. Sci.
0360-1285,
27
, pp.
141
169
.
2.
Flores
,
R. M.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
, 2003, “
Impact Of Ethane & Propane Variation In Natural Gas On The Performance Of A Model Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
3
), pp.
701
708
.
3.
Klimstra
,
Jacob
, 1986, “
Interchangeability of Gaseous Fuels—The Importance of the Wobbe Index
,” SAE Paper No. 861578.
4.
Moliere
,
M.
, 2002, “
Benefiting from the Wide Fuel Capability of Gas Turbines: A Review of Application Opportunities
,” ASME Paper No. GT-2002-30017.
5.
King
,
S.
, 1992, “
The Impact of Natural Gas Composition on Fuel Metering and Engine Operating Characteristics
,” SAE, Paper No. 920593.
6.
Tillman
,
D. A.
, and
Harding
,
N. S.
, 2004,
Fuels of Opportunity: Characteristics and Uses in Combustion Systems
,
Elsevier
,
New York
, pp.
273
287
.
7.
Durbin
,
M.
, and
Ballal
,
D.
, 1996, “
Studies of Lean Blowout in a Step Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
118
.
8.
Barlow
,
R. S.
,
Fiechtner
,
G. J.
,
Carter
,
C. D.
, and
Chen
,
J. Y.
, 2000, “
Experiments on the Scalar Structure of Turbulent CO∕H2∕N2 Jet Flames
,”
Combust. Flame
0010-2180,
120
, pp.
549
569
.
9.
Correa
,
S. M.
, and
Gulati
,
A.
, 1998, “
Non-Premixed Turbulent CO∕H2 Flames at Local Extinction Conditions
,”
Proc. Combust. Inst.
1540-7489,
22
, pp.
599
606
.
10.
Drake
,
M. C.
, 1986, “
Stretched Laminar Flamelet Analysis of Turbulent H2 and CO∕H2∕N2 Diffusion Flames
,”
Proc. Combust. Inst.
1540-7489,
21
, pp.
1579
1589
.
11.
Correa
,
S. M.
,
Gulati
,
A.
, and
Pope
,
S. B.
, 1988, “
Assessment of a Partial Equilibrium∕Monte Carlo Model for Turbulent Syngas Flames
,”
Combust. Flame
0010-2180,
72
, pp.
159
173
.
12.
Masri
,
A. R.
, and
Dibble
,
R. W.
, 1988, “
Spontaneous Raman Measurements in Turbulent CO∕H2∕N2 Flames Near Extinction
,”
Proc. Combust. Inst.
1540-7489,
22
, pp.
607
618
.
13.
Glassman
,
I.
, 1996,
Combustion
,
Academic
,
New York
.
14.
Maloney
,
D.
, 2002, “
The Simulation Validation Project at NETL
,” DOE Report.
15.
Schefer
,
R. W.
, 2003, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
1131
1141
.
16.
Wicksall
,
D.
, and
Agrawal
,
A.
, 2001, “
Effects of Fuel Composition on Flammability Limit of a Lean, Premixed Combustor
,” ASME Paper No. 2001-GT-0007.
17.
Yoshimura
,
T.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
, 2005, “
Evaluation of Hydrogen Addition to Natural Gas on the Stability and Emissions Behavior of a Model Gas Turbine Combustor
,” ASME Paper No. GT2005-68785.
18.
Sankaran
,
Ramanan
,
Im
, and
Hong
,
G.
, 2002, “
Dynamic Flammability Limits of Methane∕Air Premixed Flames With Mixture Composition Fluctuations
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
77
84
.
19.
Jackson
,
G. S.
,
Sai
,
R.
,
Plaia
,
J. M.
,
Boggs
,
C. M.
, and
Kiger
,
K. T.
, 2003, “
Influence of H2 on the Response of Lean Premixed CH4 Flames to High Strained Flows
,”
Combust. Flame
0010-2180,
132
, pp.
503
511
.
20.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
, 1994, “
Laminar Flame Speeds and Extinction Strains Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air
,”
Proc. Combust. Inst.
1540-7489,
25
, pp.
1317
1341
.
21.
Natarajan
,
J.
,
Nandula
,
S.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
, 2005, “
Laminar Flame Speeds of Synthetic Gas Fuel Mixtures
,” ASME Paper No. GT2005-68917.
22.
Effinger
,
M. W.
,
Mauzey
,
J. L.
, and
McDonell
,
V. G.
, “
Characterization and Reduction of Pollutant Emissions From a Landfill and Digester Fired Microturbine Generator
,” ASME Paper No. GT2005-68520.
23.
McDonell
,
V. G.
,
Effinger
,
M. W.
, and
Mauzey
,
J. L.
, “
Correlation of Landfill and Digester Gas Composition With Gas Turbine Pollutant Emissions
,” ASME Paper No. GT2006-90727.
24.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
,
Lutz
,
A. E.
,
Dixon-Lewis
,
G.
,
Smooke
,
M. D.
,
Warnatz
,
J.
,
Evans
,
G. H.
,
Larson
,
R. S.
,
Mitchell
,
R. E.
,
Petzold
,
L. R.
,
Reynolds
,
W. C.
,
Caracotsios
,
M.
,
Stewart
,
W. E.
,
Glarborg
,
P.
,
Wang
,
C.
, and
Adigun
,
O.
, 2000, CHEMKIN collection, Release 3.6, Reaction Design, Inc., San Diego, CA.
25.
Kido
,
H.
,
Nakahara
,
M.
,
Nakashima
,
K.
, and
Hashimoto
,
J.
, 2002, “
Influence of Local Flame Displacement Velocity on Turbulent Burning Velocity
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1855
1861
.
26.
Kido
,
H.
,
Nakahara
,
M.
,
Hashimoto
,
J.
, and
Barat
,
D.
, 2002, “
Turbulent Burning Velocity of Two Component Fuel Mixtures of Methane, Propane and Hydrogen
,”
Jpn. Soc. Mech. Eng. Int. J.
,
45
, pp.
355
362
.
27.
Hall
,
J. M.
,
Rickard
,
M. J. A.
, and
Petersen
,
E. L.
, 2005, “
Comparison of Characteristic Time Diagnostics for Ignition and Oxidation of Fuel∕Oxidizer Mixtures Behind Reflected Shock Waves
,”
Combust. Sci. Technol.
0010-2202,
177
, pp.
455
483
.
28.
Spadaccini
,
L. J.
, and
Colket
,
M. B.
III
, 1994, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
20
, pp.
431
460
.
29.
Petersen
,
E. L.
,
Röhrig
,
M.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
, and
Bowman
,
C. T.
, 1996, “
High-Pressure Methane Oxidation Behind Reflected Shock Waves
,”
Proc. Combust. Inst.
1540-7489,
26
, pp.
799
806
.
30.
Petersen
,
E. L.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
, 1999, “
Ignition Delay Times of Ram Accelerator CH4∕O2∕Diluent Mixtures
,”
J. Propul. Power
0748-4658,
15
, pp.
82
91
.
31.
Huang
,
J.
,
Hill
,
P. G.
,
Bushe
,
W. K.
, and
Munshi
,
S. R.
, 2004, “
Shock-Tube Study of Methane Ignition Under Engine-Relevant Conditions: Experiments and Modeling
,”
Combust. Flame
0010-2180,
136
, pp.
25
42
.
32.
Zhukov
,
V. P.
,
Sechenov
,
V. A.
, and
Starikovskii
,
A. Yu.
, 2003, “
Spontaneous Ignition of Methane-Air Mixtures in a Wide Range of Pressures
,”
Combust., Explos. Shock Waves
0010-5082,
30
, pp.
487
495
.
33.
Petersen
,
E. L.
,
Hall
,
J. M.
,
Smith
,
S. D.
,
de Vries
,
J.
,
Amadio
,
A.
, and
Crofton
,
M. W.
, 2005, “
Ignition of Fuel-Lean Natural Gas Blends at Gas Turbine Pressures
,”
ASME Turbo EXPO 2005
,
Reno
, Jun., Paper No. GT2005-68517.
34.
Hall
,
J. M.
, and
Petersen
,
E. L.
, 2005, “
Development of a Chemical Kinetics Mechanism for CH4∕H2∕Air Ignition at Elevated Pressures
,” AIAA Paper No. 2005-3768.
35.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, GRI-MECH 3.0, http://www.me.berkeley.edu/gri-mech/http://www.me.berkeley.edu/gri-mech/.
36.
Hunter
,
T. B.
,
Wang
,
H.
,
Litzinger
,
T. A.
, and
Frenklach
,
M.
, 1994, “
The Oxidation of Methane at Elevated Pressures: Experiments and Modeling
,”
Combust. Flame
0010-2180,
97
, pp.
201
224
.
37.
Wang
,
H.
, and
Laskin
,
A.
, 1999, “
On Initiation Reactions of Acetylene Oxidation in Shock Tubes A Quantum Mechanical and Kinetic Modeling Study
,”
Chem. Phys. Lett.
0009-2614,
303
, pp.
43
49
.
38.
Kalitan
,
D. M.
,
Petersen
,
E. L.
,
Mertens
,
J. D.
, and
Crofton
,
M. W.
, 2005, “
Ignition and Oxidation of Lean CO∕H2 Fuel Blends in Air
,” AIAA Paper No. 2005-3767.
39.
Kalitan
,
D. M.
, and
Petersen
,
E. L.
, 2006, “
Ignition of Lean CO/H/Air Mixtures at Elevated Pressures—Part II
,” ASME Paper No. GT2006-90488.
40.
Davis
,
S. G.
,
Joshi
,
A. V.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
, 2005, “
An Optimized Kinetic Model of H2∕CO Combustion
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1283
1292
.
41.
Petersen
,
E. L.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
, 1999, “
Kinetics Modeling of Shock-Induced Ignition in Low-Dilution CH4∕O2 Mixtures at High Pressures and Intermediate Temperatures
,”
Combust. Flame
0010-2180,
117
, pp.
272
290
.
42.
Skinner
,
G. B.
, and
Ringrose
,
G. H.
, 1965, “
Ignition Delays of a Hydrogen-Oxygen-Argon Mixture at Relatively Low Temperatures
,”
J. Chem. Phys.
0021-9606,
42
, pp.
2190
2192
.
43.
Zukoski
,
E. E.
, 1997, “
Afterburners
,” in
Aerothermodynamics of Gas Turbine and Rocket Propulsion
,
G.
Oates
, ed.,
Dover
,
New York
.
44.
Spaulding
,
D.
, 1955,
Some Fundamentals of Combustion
,
Butterworth
,
London
, Chap. 5.
45.
Longwell
,
J.
,
Frost
,
E.
,
Weiss
,
M.
, 1953, “
Flame Stability in Bluff-Body Recirculation Zones
,”
Ind. Eng. Chem.
0019-7866,
45
(
8
), pp.
1629
1633
.
46.
Putnam
,
A. A.
, and
Jensen
,
R. A.
, 1949, “
Appplication of Dimensionless Numbers to Flash-back and Other Combustion Phenomena
,”
Proc. Combust. Inst.
1540-7489,
125
, pp.
89
98
.
47.
Plee
,
S. L.
, and
Mellor
,
A. M.
, 1979, “
Characteristic Time Correlation for Lean Blowoff of Bluff Body Stabilized Flames
,”
Combust. Flame
0010-2180,
35
, pp.
61
80
.
48.
Radhakrishnan
,
K.
,
Heywood
,
J.
, and
Tabaczynski
,
R.
, 1981, “
Premixed Turbulent Flame Blowoff Velocity Correlation Based on Coherent Structures in Turbulent Flows
,”
Combust. Flame
0010-2180,
42
, pp.
19
33
.
49.
Noble
,
D.
,
Zhang
,
Q.
,
Shareef
,
A.
,
Tootle
,
J.
,
Meyers
,
A.
, and
Lieuwen
,
T.
, 2006, “
Syngas Mixture Composition Effects Upon Flashback and Blowout
,” ASME Paper No. 2006-90470.
50.
Kroner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
, 2002, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,” ASME Paper No. GT-2002-30075.
51.
Umemura
,
A.
, and
Tomita
,
K.
, 2001, “
Rapid Flame Propagation in a Vortex Tube in Perspective of Vortex Breakdown Phenomenon
,”
Combust. Flame
0010-2180,
125
, pp.
820
838
.
52.
Brown
,
G.
, and
Lopez
,
J.
, 1990, “
Axisymmetric Vortex Breakdown Part 2: Physical Mechanisms
,”
J. Fluid Mech.
0022-1120,
221
, pp.
553
576
.
53.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
, 2001, “
A Mechanism for Combustion Instabilities in Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
(
1
), pp.
182
190
.
54.
Gonzalez-Juez
,
E.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
, “
A Study of Combustion Instabilities Driven by Flame-Vortex Interactions
,” AIAA Paper No. 2005-4330.
55.
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 2003, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
735
750
.
56.
Mueller
,
M. A.
,
Kim
,
T. J.
,
Yetter
,
R. A.
, and
Dryer
,
F. L.
, 1999, “
Flow Reactor Studies and Kinetic Modeling of the H2∕O2 Reaction
,”
Int. J. Chem. Kinet.
0538-8066,
31
, pp.
113
125
.
57.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Frank
,
P.
,
Hayman
,
G.
,
Just
,
Th.
,
Kerr
,
J. A.
,
Murrells
,
T.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J.
, 1994, “
Summary Table of Evaluated Kinetic Data for Combustion Modeling: Supplement 1
,”
Combust. Flame
0010-2180,
98
, pp.
59
79
.
59.
Peschke
,
W. T.
, and
Spadaccini
,
L. J.
, “
Determination of Autoignition and Flame Speed Characteristics of Coal Gases Having Medium Heating Values
,” Final Report for AP-4291 Research Project 2357-1.
You do not currently have access to this content.