Abstract

The paper addresses the effect of processing parameters on microstructure and lifetime of electron beam physical vapor deposition, partially yttria-stabilized zirconia (EB-PVD PYSZ) coatings deposited onto NiCoCrAlY-coated Ni-base superalloys. In particular, the formation of a thermally grown oxide layer, an equi-axed zone, and various columnar arrangements of the highly textured PYSZ layers are discussed with respect to processing conditions. Three different microstructures were cyclically tested at 1100°C. The intermediate columnar structure was superior with respect to cyclic life times to a fine and to a coarse columnar structure which was mainly attributed to differences in the elastic properties. The effect of PYSZ microstructure on hot corrosion behavior of the thermal barrier coating (TBC) system at 950°C is briefly discussed.

1.
Schulz, U., Kro¨der, C., Brien, J., Schurmann, H., and Fritscher, K., 1999, U.S. Patent 6063435.
2.
Leyens
,
C.
,
Schulz
,
U.
,
Pint
,
B. A.
, and
Wright
,
I. G.
,
1999
, “
Influence of EB-PVD TBC Microstructure on Thermal Barrier Coating System Performance Under Cyclic Oxidation and Hot Corrosion Conditions
,”
Surf. Coat. Technol.
,
120–121
, pp.
68
76
.
3.
Fritscher, K., Schulz, U., and Schmu¨cker, M., 1999, “EB-PVD TBC lifetime Response to Various Bond Coat Pretreatments,” Cyclic Oxidation of High Temperature Materials, M. Schu¨tze and W. J. Quadakkers, eds., The Institute of Materials, London, EFC public. No. 27, pp. 383–391.
4.
Leyens, C; Wright, I. G., Pint, B. A., and Tortorelli, P. F., 1999, “Significance of Experimental Procedures on the Hot Corrosion Behavior of Nickel-Base Alloys Under Cyclic Conditions,” Cyclic Oxidation of High Temperature Materials, M. Schu¨tze and W. J., Quadakkers, eds., The Institute of Materials, London, EFC Pub. No. 27, pp. 169–186.
5.
Szu¨cs, F., 1998, “Thermomechanische Analyse und Modellierung plasmagespritzter und EB-PVD aufgedampfter Wa¨rme-da¨mmschicht-Systeme fu¨r Gasturbinen,” Fortschr.-Ber. VDI Verlag Du¨sseldorf, Serial5, No. 518.
6.
Clarke, D. R., Sergo, V., and He, M.-Y., 1999, “Precursor to TBC Failure by Constrained Phase Transformation in the Thermally Grown Oxide,” Elevated Temperature Coatings: Science and Technology III, J. M. Hampikian and N. B. Dahotre, eds., TMS, Warrendale, PA, pp. 67–78.
7.
Unal
,
O.
,
Mitchell
,
T. E.
, and
Heuer
,
A. H.
,
1994
, “
Microstructures of Y2O3-stabilized ZrO2 Electron Beam-Physical Vapor Deposition Coatings on Ni-Base Superlloys
,”
J. Am. Ceram. Soc.
,
77/4
,
984
992
.
8.
Schulz
,
U.
, and
Schmu¨cker
,
M.
,
2000
, “
Microstructure of ZrO2 Thermal Barrier Coatings Applied by EB-PVD
,”
Mater. Sci. Eng., A
,
276
, pp.
1
8
.
9.
Fritscher, K., and Bunk, W., 1990, “Density-Graded TBC’s Processed by EB-PVD,” 1st International Symposium on Functionally Gradient Material, Proc. M. Yamanouchi et al., eds., Society of Non. Traditional Technology, Tokyo, Japan pp. 91–96.
10.
Schulz
,
U.
,
Fritscher
,
K.
,
Leyens
,
C.
,
Peters
,
M.
, and
Kaysser
,
W. A.
,
1997
, “
Thermocyclic Behavior of Differently Stabilized and Structured EB-PVD Thermal Barrier Coatings
,”
Material-wissenschaft und Werkstofftechnik
,
28
, pp.
370
376
.
11.
Schulz
,
U.
,
Fritscher
,
K.
,
Ra¨tzer-Scheibe
,
H.-J.
,
Peters
,
M.
, and
Kaysser
,
W. A.
,
1997
, “
Thermocyclic Behavior of Microstructurally Modified EB-PVD Thermal Barrier Coatings
,”
Mater. Sci. Forum
,
251–254
, pp.
957
964
.
12.
Movchan
,
B. A.
, and
Demchishin
,
A. V.
,
1969
, “
Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide
,”
Fiz. Met. Metalloved.
,
28
, pp.
83
90
.
13.
Johnson
,
C. A.
,
Ruud
,
J. A.
,
Bruce
,
R.
, and
Wortman
,
D.
,
1998
, “
Relationship Between Residual Stress, Microstructure, and Mechanical Properties of Electron Beam-Physical Vapor Deposited Thermal Barrier Coatings.
Surf. Coat. Technol.
,
108–109
, pp.
80
85
.
14.
Marci, G., Bartsch, M., and Mull, K., 1999, “Ermittlung des Elastizita¨tsmoduls von keramischen Wa¨rmeda¨mmschichten fu¨r thermisch und mechanisch hoch belastete Gasturbinenkomponenten,” Proceedings DVM-conference Werkstoffpru¨fung 1999, Dec. 2–3, Bad Nauhelm, pp. 271–280.
15.
Kirchhoff, G., Langmeier, P., and Hennig, J., 1998, unpublished results.
16.
Morell, P., and Rickerby, D. S., 1999, “Advantages/Disadvantages of Various TBC Systems as Perceived by the Engine Manufacturer,” AGARD report 823 “Thermal barrier coatings” 20-1/20-9.
17.
Schulz
,
U.
,
Oettel
,
H.
, and
Bunk
,
W.
,
1996
, “
Texture of EB-PVD Thermal Barrier Coatings Under Variable Deposition Conditions
,”
Z. Metallkd.
,
87/6
, pp.
488
492
.
18.
Kaden, U., Leyens, C., Peters, M., Kaysser, W. A., 1999, “Thermal Stability of an EB-PVD Thermal Barrier Coating System on a Single Crystal Nickel-Base Superalloy,” Elevated Temperature Coatings: Science and Technology III, J. M. Hampikian and N. B. Dahotre, eds., TMS, pp. 27–38.
19.
Walter
,
M. E.
, and
Eigenmann
,
B.
,
2000
, “
Mechanical Response of Three As-Received EB-PVD Zirconia Thermal Barrier Coating Microstructures
,”
Mater. Sci. Eng., A
,
282
,
49
58
.
20.
Leyens
,
C.
,
Wright
,
I. G.
, and
Pint
,
B. A.
,
2000
, “
Hot Corrosion of an EB-PVD Thermal Barrier Coating System at 950°C
,”
Oxidation of Metals
,
54
(
5/6
),
401
424
.
21.
Meier, S. M., Nissley, D. M., Sheffler, K. D., 1991, “Thermal Barrier Coating Life Prediction Model Development,” Phase II Final Report, NASA CR 189111.
You do not currently have access to this content.