This paper presents a selection of experimental results that examines the influence of orthogonal-mode rotation on local and mean heat transfer in a triangular-sectioned duct with potential application to cooled turbine rotor blades. It is shown that Coriolis acceleration can have a beneficial influence on mean heat transfer relative to the nonrotating case at the lower range of turbulent pipe flow Reynolds numbers studied. Also, rotational buoyancy has been shown to have a noticeable effect over this same Reynolds number range in that progressively increasing buoyancy brings about an attendant reduction in heat transfer. As the Reynolds numbers are increased, say, beyond 30,000, buoyancy effects were found to have little influence on mean heat transfer over the speed range covered. Local axial variations in heat transfer along the duct were also measured, and severe reductions in local heat transfer were detected under certain operating circumstances.

This content is only available via PDF.
You do not currently have access to this content.