Abstract

The present work aims to study the effect of veer, namely, the height-dependent lateral deflection of wind velocity due to Coriolis acceleration, on the coherent structures in the wake of the national renewable energy laboratory 5-MW reference wind turbine using the sparsity-promoting dynamic mode decomposition (SP-DMD) method for the detection of dynamically relevant flow structures. Large eddy simulation (LES) of the flow impacting the wind turbine is carried out by solving the filtered Navier–Stokes equations for incompressible flows. The effects of both tower and nacelle are included in the simulation using the immersed boundary method. Simulations are performed at Re108, generating the inlet velocity profile by a precursor simulation of the atmospheric boundary layer (ABL) subjected to Coriolis acceleration. The analysis of the dynamic mode decomposition (DMD) results allows to study the effects of the Coriolis acceleration on the most relevant dynamic modes in the turbine wake and to understand the basic mechanisms by which the wind veer significantly affects the wake recovery rate. Moreover, as a result of the SP-DMD methodology, the most relevant modes are extracted from the wake and a limited subset of relevant flow features that optimally approximates the original data sequence is identified. This small number of modes represent the kernel that can be employed for developing an accurate reduced order model of the wake.

References

1.
IRENA
,
2023
, “
COP28, IRENA and GRA (2023), Tripling Renewable Power and Doubling Energy Efficiency by 2030: Crucial Steps Towards 1.5 °C
,” International Renewable Energy Agency, Abu Dhabi, UAE, Report No.
978-92-9260-555-1
.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Oct/COP28_IRENA_GRA_Tripling_renewables_doubling_efficiency_2023.pdf
2.
IRENA
,
2019
, “
IRENA (2019), Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation Paper)
,” International Renewable Energy Agency, Abu Dhabi, UAE, Report No.
978-92-9260-155-3
.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019_summ_EN.pdf?la=en&hash=D07089441987EBABC7F4BED63B62C83820C18724
3.
Stevens
,
R. J.
, and
Meneveau
,
C.
,
2017
, “
Flow Structure and Turbulence in Wind Farms
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
311
339
.10.1146/annurev-fluid-010816-060206
4.
Porté-Agel
,
F.
,
Bastankhah
,
M.
, and
Shamsoddin
,
S.
,
2020
, “
Wind-Turbine and Wind-Farm Flows: A Review
,”
Boundary-Layer Meteorol.
,
174
(
1
), pp.
1
59
.10.1007/s10546-019-00473-0
5.
Kleusberg
,
E.
,
Benard
,
S.
, and
Henningson
,
D. S.
,
2019
, “
Tip-Vortex Breakdown of Wind Turbines Subject to Shear
,”
Wind Energy
,
22
(
12
), pp.
1789
1799
.10.1002/we.2403
6.
Troldborg
,
N.
,
Sørensen
,
J. N.
, and
Mikkelsen
,
R.
,
2007
, “
Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow
,”
J. Phys.: Conf. Ser.
,
75
, p.
012063
.10.1088/1742-6596/75/1/012063
7.
Chamorro
,
L. P.
, and
Porté-Agel
,
F.
,
2010
, “
Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study
,”
Boundary-Layer Meteorol.
,
136
(
3
), pp.
515
533
.10.1007/s10546-010-9512-1
8.
Medici
,
D.
, and
Alfredsson
,
P.
,
2006
, “
Measurements on a Wind Turbine Wake: 3D Effects and Bluff Body Vortex Shedding
,”
Wind Energy
,
9
(
3
), pp.
219
236
.10.1002/we.156
9.
Wu
,
Y.-T.
, and
Porté-Agel
,
F.
,
2012
, “
Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study
,”
Energies
,
5
(
12
), pp.
5340
5362
.10.3390/en5125340
10.
De Cillis
,
G.
,
Cherubini
,
S.
,
Semeraro
,
O.
,
Leonardi
,
S.
, and
De Palma
,
P.
,
2022
, “
The Influence of Incoming Turbulence on the Dynamic Modes of an NREL-5 MW Wind Turbine Wake
,”
Renewable Energy
,
183
, pp.
601
616
.10.1016/j.renene.2021.11.037
11.
Abkar
,
M.
, and
Porté-Agel
,
F.
,
2016
, “
Influence of the Coriolis Force on the Structure and Evolution of Wind Turbine Wakes
,”
Phys. Rev. Fluids
,
1
(
6
), p.
063701
.10.1103/PhysRevFluids.1.063701
12.
Gadde
,
S. N.
, and
Stevens
,
R. J.
,
2019
, “
Effect of Coriolis Force on a Wind Farm Wake
,”
J. Phys.: Conf. Ser.
,
1256
(
1
), p.
012026
.10.1088/1742-6596/1256/1/012026
13.
Abkar
,
M.
,
Sørensen
,
J. N.
, and
Porté-Agel
,
F.
,
2018
, “
An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes
,”
Energies
,
11
(
7
), p.
1838
.10.3390/en11071838
14.
Howland
,
M. F.
,
González
,
C. M.
,
Martínez
,
J. J. P.
,
Quesada
,
J. B.
,
Larranaga
,
F. P.
,
Yadav
,
N. K.
,
Chawla
,
J. S.
, and
Dabiri
,
J. O.
,
2020
, “
Influence of Atmospheric Conditions on the Power Production of Utility-Scale Wind Turbines in Yaw Misalignment
,”
J. Renewable Sustainable Energy
,
12
(
6
), p.
063307
.10.1063/5.0023746
15.
Narasimhan
,
G.
,
Gayme
,
D. F.
, and
Meneveau
,
C.
,
2022
, “
Effects of Wind Veer on a Yawed Wind Turbine Wake in Atmospheric Boundary Layer Flow
,”
Phys. Rev. Fluids
,
7
(
11
), p.
114609
.10.1103/PhysRevFluids.7.114609
16.
Jovanović
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluids
,
26
(
2
), p.
024103
.10.1063/1.4863670
17.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.10.1017/S0022112009992059
18.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
19.
Debnath
,
M.
,
Santoni
,
C.
,
Leonardi
,
S.
, and
Iungo
,
G. V.
,
2017
, “
Towards Reduced Order Modelling for Predicting the Dynamics of Coherent Vorticity Structures Within Wind Turbine Wakes
,”
Philos. Trans. R. Soc. A
,
375
(
2091
), p.
20160108
.10.1098/rsta.2016.0108
20.
Kleine
,
V. G.
,
Kleusberg
,
E.
,
Hanifi
,
A.
, and
Henningson
,
D. S.
,
2019
, “
Tip-Vortex Instabilities of Two in-Line Wind Turbines
,”
J. Phys.: Conf. Ser.
,
1256
(
1
), p.
012015
.10.1088/1742-6596/1256/1/012015
21.
Sun
,
C.
,
Tian
,
T.
,
Zhu
,
X.
,
Hua
,
O.
, and
Du
,
Z.
,
2021
, “
Investigation of the Near Wake of a Horizontal-Axis Wind Turbine Model by Dynamic Mode Decomposition
,”
Energy
,
227
, p.
120418
.10.1016/j.energy.2021.120418
22.
Iungo
,
G. V.
,
Santoni-Ortiz
,
C.
,
Abkar
,
M.
,
Porté-Agel
,
F.
,
Rotea
,
M. A.
, and
Leonardi
,
S.
,
2015
, “
Data-Driven Reduced Order Model for Prediction of Wind Turbine Wakes
,”
J. Phys.: Conf. Ser.
,
625
, p.
012009
.10.1088/1742-6596/625/1/012009
23.
De Cillis
,
G.
,
Semeraro
,
O.
,
Leonardi
,
S.
,
De Palma
,
P.
, and
Cherubini
,
S.
,
2022
, “
Dynamic-Mode-Decomposition of the Wake of the NREL-5 MW Wind Turbine Impinged by a Laminar Inflow
,”
Renewable Energy
,
199
, pp.
1
10
.10.1016/j.renene.2022.08.113
24.
Sescu
,
A.
, and
Meneveau
,
C.
,
2014
, “
A Control Algorithm for Statistically Stationary Large-Eddy Simulations of Thermally Stratified Boundary Layers
,”
Q. J. R. Meteorol. Soc.
,
140
(
683
), pp.
2017
2022
.10.1002/qj.2266
25.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
26.
Santoni
,
C.
,
Ciri
,
U.
,
Rotea
,
M.
, and
Leonardi
,
S.
,
2015
, “
Development of a High Fidelity CFD Code for Wind Farm Control
,” 2015 American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
1715
1720
.10.1109/ACC.2015.7170980
27.
Santoni
,
C.
,
Carrasquillo
,
K.
,
Arenas-Navarro
,
I.
, and
Leonardi
,
S.
,
2017
, “
Effect of Tower and Nacelle on the Flow Past a Wind Turbine
,”
Wind Energy
,
20
(
12
), pp.
1927
1939
.10.1002/we.2130
28.
Martinez
,
L.
,
Leonardi
,
S.
,
Churchfield
,
M.
, and
Moriarty
,
P.
,
2012
, “
A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and Best Practices for Their Use
,”
AIAA
Paper No. 2012-0900.10.2514/6.2012-0900
29.
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
1999
, “
Computation of Wind Turbine Wakes Using Combined Navier-Stokes/Actuator-Line Methodology
,”
1999 European Wind Energy Conference
, Nice, France, Mar. 1–5, pp.
156
159
.
30.
Orlandi
,
P.
, and
Leonardi
,
S.
,
2006
, “
DNS of Turbulent Channel Flow With Two-and Three-Dimensional Roughness
,”
J. Turbul.
, 7(
1
), p.
N73
.10.1080/14685240600827526
31.
De Cillis
,
G.
,
Cherubini
,
S.
,
Semeraro
,
O.
,
Leonardi
,
S.
, and
De Palma
,
P.
,
2021
, “
POD–Based Analysis of a Wind Turbine Wake Under the Influence of Tower and Nacelle
,”
Wind Energy
,
24
(
6
), pp.
609
633
.10.1002/we.2592
32.
Bernardoni
,
F.
,
Ciri
,
U.
,
Rotea
,
M.
, and
Leonardi
,
S.
,
2020
, “
Real-Time Identification of Clusters of Turbines
,”
J. Phys.: Conf. Ser.
,
1618
(
2
), p.
022032
.10.1088/1742-6596/1618/2/022032
33.
Flay
,
R.
, and
Stevenson
,
D.
,
1988
, “
Integral Length Scales in Strong Winds Below 20 m
,”
J. Wind Eng. Ind. Aerodyn.
,
28
(
1–3
), pp.
21
30
.10.1016/0167-6105(88)90098-0
34.
Stanislawski
,
B. J.
,
Thedin
,
R.
,
Sharma
,
A.
,
Branlard
,
E.
,
Vijayakumar
,
G.
, and
Sprague
,
M. A.
,
2023
, “
Effect of the Integral Length Scales of Turbulent Inflows on Wind Turbine Loads
,”
Renewable Energy
,
217
, p.
119218
.10.1016/j.renene.2023.119218
35.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
36.
Orlanski
,
I.
,
1976
, “
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
,
21
(
3
), pp.
251
269
.10.1016/0021-9991(76)90023-1
37.
de Tullio
,
M. D.
,
De Palma
,
P.
,
Iaccarino
,
G.
,
Pascazio
,
G.
, and
Napolitano
,
M.
,
2007
, “
An Immersed Boundary Method for Compressible Flows Using Local Grid Refinement
,”
J. Comput. Phys.
,
225
(
2
), pp.
2098
2117
.10.1016/j.jcp.2007.03.008
38.
Abkar
,
M.
, and
Porté-Agel
,
F.
,
2015
, “
Influence of Atmospheric Stability on Wind-Turbine Wakes: A Large Eddy Simulation Study
,”
Phys. Fluids
,
27
(
3
), p.
035104
.10.1063/1.4913695
39.
Mao
,
X.
, and
Sørensen
,
J. N.
,
2018
, “
Far-Wake Meandering Induced by Atmospheric Eddies in Flow Past a Wind Turbine
,”
J. Fluid Mech.
,
846
, pp.
190
209
.10.1017/jfm.2018.275
40.
Gupta
,
V.
, and
Wan
,
M.
,
2019
, “
Low-Order Modelling of Wake Meandering Behind Turbines
,”
J. Fluid Mech.
,
877
, pp.
534
560
.10.1017/jfm.2019.619
You do not currently have access to this content.