Abstract

Ultra-high-speed centrifugal pumps are frequently utilized in chemical and aerospace industries, yet the impact of fluid weak compressibility on pressure pulsation remains unclear. This study employs the delayed detached eddy simulation (DDES) numerical method to investigate the effects of the medium's weak compressibility on the internal flow field structure of an ultrahigh-speed centrifugal pump, with a particular focus on pressure pulsations. The DDES numerical results were validated through experimental tests, showing good agreement with the experimental pump performance and measured pressure pulsation data, particularly at the blade passing frequency and under various flow conditions. Results indicate that under weak compressibility conditions, the density and velocity distribution of the fluid inside the pump are influenced. Moreover, the weak compressibility of the medium impacts the pressure pulsation signals under the design condition, especially for the monitoring points around the volute tongue where the amplitude is approximately 60∼85% of that in the incompressible state, besides, a significant impact under low flowrate is generated. By comparing the blade passing frequency–amplitude and the root-mean-square (RMS) energy within the 0-100 kHz frequency band, it is evident that considering weak compressibility effects results in overall lower pressure pulsation energy within the pump compared to the incompressible state. This finding suggests that the weak compressibility effect of the fluid has a suppressive influence on pressure pulsation in the ultrahigh-speed centrifugal pump.

References

1.
Zhang
,
X. H.
,
Li
,
S. L.
,
Chang
,
F.
,
Du
,
X.
, and
Ying
,
J.
,
2017
, “
Life Prediction of Aviation Fuel Pump Based on Wiener Process
,”
J. Aeronaut. Sci. Technol.
,
28
(
11
), pp.
47
53
.https://link.oversea.cnki.net/doi/10.19452/j.issn1007-5453.2017.11.047
2.
Cao
,
P.
,
Liu
,
L.
,
Zhang
,
J.
,
Li
,
G.
,
Zhu
,
R.
, and
Yang
,
Z.
,
2024
, “
A Study of the Hydrodynamic Characteristics of Two-Dimensional Tandem Cascades
,”
Water
,
16
(
5
), p.
679
.10.3390/w16050679
3.
Yang
,
J.
,
Liu
,
J.
,
Liu
,
X. H.
, and
Xie
,
T.
,
2019
, “
Numerical Study of Pressure Pulsation of Centrifugal Pumps With the Compressible Mode
,”
J. Therm. Sci.
,
28
(
1
), pp.
106
114
.10.1007/s11630-018-1071-7
4.
Zhang
,
F. F.
,
Li
,
N.
,
Zhu
,
D.
,
Xiao
,
R. F.
,
Liu
,
W. C.
, and
Tao
,
R.
,
2022
, “
Influence of Weak Compressibility on the Hydrodynamic Performance Evaluation of Pump Turbines in the Pump Mode
,”
Sci. Technol. Nucl. Install.
,
2022
(
1
), pp.
1
16
.10.1155/2022/3544436
5.
Wang
,
S. L.
,
Chen
,
X. P.
,
Li
,
X. J.
,
Cui
,
B. L.
, and
Zhu
,
Z. C.
,
2022
, “
Weak Compressibility Effects on the Pressure Fluctuation at RSI in a Highspeed Centrifugal Pump
,”
Mech. Sci. Technol.
,
36
(
10
), pp.
5047
5057
.10.1007/s12206-022-0918-8
6.
Limbach
,
P.
,
Müller
,
T.
, and
Skoda
,
R.
,
2015
, “
Application of a Compressible Flow Solver and Barotropic Cavitation Model for the Evaluation of the Suction Head in a Low Specific Speed Centrifugal Pump Impeller Channel
,”
J. Phys. Conf. Ser.
,
656
(
1
), pp.
012065
012065
.10.1088/1742-6596/656/1/012065
7.
Ma
,
J.
,
Xu
,
B.
,
Zhang
,
B.
, and
Yang
,
H. Y.
,
2010
, “
Flow Ripple of Axial Piston Pump With Computational Fluid Dynamic Simulation Using Compressible Hydraulic Oil
,”
Chin. J. Mech. Eng.
,
23
(
1
), pp.
45
45
.10.3901/CJME.2010.01.045
8.
Bertoglio
,
J. P.
,
Bataille
,
F.
, and
Marion
,
J. D.
,
2001
, “
Two-Point Closures for Weakly Compressible Turbulence
,”
Phys. Fluids
,
13
(
1
), pp.
290
310
.10.1063/1.1324005
9.
Shakibaeinia
,
A.
, and
Jin
,
Y. C.
,
2011
, “
A Mesh-Free Particle Model for Simulation of Mobile-Bed Dam Break
,”
Adv. Water Resour.
,
34
(
6
), pp.
794
807
.10.1016/j.advwatres.2011.04.011
10.
Li
,
D. L.
,
Zhang
,
N.
,
Jiang
,
J. X.
,
Gao
,
B.
,
Alubokin
,
A. A.
,
Zhou
,
W. J.
, and
Shi
,
J. L.
,
2022
, “
Numerical Investigation on the Unsteady Vortical Structure and Pressure Pulsations of a Centrifugal Pump With the Vaned Diffuser
,”
Int. J. Heat Fluid Flow
,
98
, p.
109050
.10.1016/j.ijheatfluidflow.2022.109050
11.
Cao
,
P.
,
Yue
,
R.
,
Zhang
,
J.
,
Liu
,
X.
,
Wu
,
G.
, and
Zhu
,
R.
,
2024
, “
Proper Orthogonal Decomposition Based Response Analysis of Inlet Distortion on a Waterjet Pump
,”
Water
,
16
(
9
), p.
1282
.10.3390/w16091282
12.
Lu
,
Y.
,
Zhao
,
W.
,
Presas Batllo
,
A.
, et al.,
2023
, “
Shutdown Idling Performance of the Nuclear Main Coolant Pump Under Station Blackout Accident: An Optimization Study
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
237
(
1
), pp.
79
97
.10.1177/09576509221105230
13.
Lu
,
Y.
,
Long
,
Y.
,
Zhu
,
R.
,
Wang
,
Z.
, and
Wang
,
X.
,
2021
, “
Transient Structural Load Characteristics of Reactor Coolant Pump Rotor System in Rotor Seizure Accident
,”
Ann. Nucl. Energy
,
164
, p.
108631
.10.1016/j.anucene.2021.108631
14.
Li
,
W.
,
Ji
,
L. L.
,
Shi
,
W. D.
,
Li
,
E. D.
, and
Ma
,
L. L.
,
2021
, “
Flow Characteristics of Tip Leakage Flow in a Mixed-Flow Pump Under Stall Conditions
,”
J. Eng. Thermophys.
,
42
(
11
), pp.
2858
2868
.
15.
Ye
,
C. L.
,
Tang
,
Y.
,
An
,
D. S.
,
Wang
,
F. J.
,
Zheng
,
Y.
, and
van Esch
,
B. P. M.
,
2023
, “
Investigation on Stall Characteristics of Marine Centrifugal Pump Considering Transition Effect
,”
Ocean Eng.
,
280
,p.
114823
.10.1016/j.oceaneng.2023.114823
16.
Long
,
Y.
,
Zhou
,
Z.
,
Yuan
,
S.
, and
Xing
,
J.
,
2024
, “
Research on Influence of Wear Ring Clearance on Energy Loss of Reactor Coolant Pump
,”
Ann. Nucl. Energy
,
209
, p.
110819
.10.1016/j.anucene.2024.110819
17.
Long
,
Y.
,
Xu
,
Y.
, and
Zhang
,
M. Y.
,
2025
, “
Analysis of Internal Flow Excitation Characteristics of Reactor Coolant Pump Based on DMD
,”
Ann. Nucl. Energy
,
211
, p.
111011
.10.1016/j.anucene.2024.111011
18.
Zhou
,
Z. H.
,
Li
,
H. C.
,
Chen
,
J. B.
,
Li
,
D. L.
, and
Zhang
,
N.
,
2023
, “
Numerical Simulation on Transient Pressure Pulsations and Complex Flow Structures of an Ultra-High-Speed Centrifugal Pump at Stalled Condition
,”
Energies
,
16
(
11
), p.
4476
.10.3390/en16114476
19.
Zhou
,
P. J.
,
Wang
,
F. J.
, and
Yao
,
Z. F.
,
2016
, “
Study on Effects of Blade Number on Stall Characteristics for Centrifugal Pump Impeller
,”
J. Mech. Eng.
,
52
(
10
), pp.
207
212
.10.3901/JME.2016.10.207
20.
Zhou
,
P. J.
,
Wang
,
F. J.
, and
Mou
,
J. G.
,
2017
, “
Investigation of Rotating Stall Characteristics in a Centrifugal Pump Impeller at Low Flow Rates
,”
Eng. Comput.
,
34
(
6
), pp.
1989
2000
.10.1108/EC-05-2016-0167
21.
Zhao
,
X. R.
,
Xiao
,
Y. X.
,
Wang
,
Z. W.
,
Luo
,
Y. Y.
, and
Cao
,
L.
,
2018
, “
Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off-Design Conditions
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021105
.10.1115/1.4037973
22.
Feng
,
J. J.
,
Ge
,
Z. G.
,
Yang
,
H. H.
,
Zhu
,
G. J.
,
Li
,
C. H.
, and
Luo
,
X. Q.
,
2021
, “
Rotating Stall Characteristics in the Vaned Diffuser of a Centrifugal Pump
,”
Ocean Eng.
,
229
, p.
108955
.10.1016/j.oceaneng.2021.108955
23.
Zhou
,
P. J.
,
Dai
,
J. C.
,
Li
,
Y. F.
,
Cheng
,
T.
, and
Mou
,
J. G.
,
2018
, “
Unsteady Flow Structures in Centrifugal Pump Under Two Types of Stall Conditions
,”
J. Hydrodyn.
,
30
(
6
), pp.
1038
1044
.10.1007/s42241-018-0125-3
24.
Luo
,
H. Y.
,
Tao
,
R.
,
Yang
,
J. D.
, and
Wang
,
Z. W.
,
2020
, “
Influence of Blade Leading-Edge Shape on Rotating-Stalled Flow Characteristics in a Centrifugal Pump Impeller
,”
Appl. Sci.
,
10
(
16
), p.
5635
.10.3390/app10165635
25.
Sano
,
T.
,
Nakamura
,
Y.
,
Yoshida
,
Y.
, and
Tsujimoto
,
Y.
,
2002
, “
Alternate Blade Stall and Rotating Stall in a Vaned Diffuser
,”
JSME Int. J.
,
45
(
4
), pp.
810
819
.10.1299/jsmeb.45.810
26.
Cao
,
L.
,
Wang
,
Z. W.
,
Xiao
,
Y. X.
, and
Luo
,
Y. Y.
,
2016
, “
Numerical Investigation on the Rotating Stall Characteristics in a Three-Blade Centrifugal Impeller
,”
ASME
Paper No. IMECE2016-65794.10.1115/IMECE2016-65794
27.
Li
,
W.
,
Li
,
E. D.
,
Ji
,
L. L.
,
Zhou
,
L.
,
Shi
,
W. D.
, and
Zhu
,
Y.
,
2020
, “
Mechanism and Propagation Characteristics of Rotating Stall in a Mixed-Flow Pump
,”
Renewable Energy
,
153
(
15374
), pp.
74
92
.10.1016/j.renene.2020.02.003
28.
Zhang
,
N.
,
Li
,
D.
,
Gao
,
B.
,
Ni
,
D.
, and
Li
,
Z.
,
2022
, “
Unsteady Pressure Pulsations in Pumps—A Review
,”
Energies
,
16
(
1
), p.
150
.10.3390/en16010150
29.
Wang
,
W.
,
Guo
,
H.
,
Zhang
,
C.
,
Shen
,
J.
,
Pei
,
J.
, and
Yuan
,
S.
,
2023
, “
Transient Characteristics of PAT in Micro Pumped Hydro Energy Storage During Abnormal Shutdown Process
,”
Renewable Energy
,
209
, pp.
401
412
.10.1016/j.renene.2023.04.026
30.
Wang
,
W. J.
,
Qiu
,
G.
,
Pei
,
J.
,
Pavesi
,
G.
,
Tai
,
G. Y.
, and
Yuan
,
S. Q.
,
2024
, “
Effect of Return Channel on Performance and Pressure Fluctuation of Pump Turbine
,”
Phys. Fluids
,
36
(
10
), p.
105129
.10.1063/5.0229130
31.
Zhou
,
D. B.
,
Zhang
,
N.
,
Zheng
,
F. K.
,
Gad
,
M.
, and
Gao
,
B.
,
2025
, “
Experimental Investigation on the Effect of the Rotor-Stator Matching Mode on Velocity Pulsation in the Centrifugal Pump With a Vaned Diffuser
,”
Nucl. Eng. Technol.
,
57
(
3
), p.
103255
.10.1016/j.net.2024.10.017
32.
Lin
,
Y.
,
Li
,
X.
,
Li
,
B.
,
Jia
,
X.
, and
Zhu
,
Z.
,
2021
, “
Influence of Impeller Sinusoidal Tubercle Trailing-Edge on Pressure Pulsation in a Centrifugal Pump at Nominal Flow Rate
,”
ASME J. Fluids Eng.
,
143
(
9
), p.
091205
.10.1115/1.4050640
33.
Cui
,
B.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2021
, “
Analysis of the Pressure Pulsation and Vibration in a Low-Specific-Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
143
(
2
), p.
021201
.10.1115/1.4048691
34.
Ma
,
Z.
,
Zhu
,
Y.
,
Li
,
J.
,
Song
,
Z.
,
Yu
,
J.
,
Li
,
Y.
, and
Xu
,
L.
,
2024
, “
Study on the Performance of Detection Air Duct and Evaluation Index of Agricultural Cleaning Centrifugal Fans
,”
Biosyst. Eng.
,
239
, pp.
81
97
.10.1016/j.biosystemseng.2024.01.015
35.
Xu
,
L.
,
Hansen
,
A. C.
,
Li, Y. M., Liang, Z. W., Yu, L. J.
,
2016
, “
Numerical and Experimental Analysis of Airflow in a Multi-Duct Cleaning System for a Rice Combine Harvester
,”
Trans. ASABE
,
59
(
5
), pp.
1101
1110
.10.13031/trans.59.11569
36.
Luo
,
Y. X.
,
Wen
,
F. B.
,
Wang
,
S. T.
, and
Wang
,
Z. Q.
,
2024
, “
DDES Study on a Pressure-Side Cutback Cooling Turbine Blade With a Whisker Lip and a Whisker Trailing Edge
,”
Numer. Heat Transfer Part A Appl.
,
85
(
5
), pp.
739
760
.10.1080/10407782.2023.2192434
37.
Tang
,
X.
,
Liu
,
Z. L.
,
Zhao
,
M.
,
Yang
,
H. T.
,
Jiang
,
W.
,
Wang
,
Y. C.
, and
Chen
,
D. Y.
,
2021
, “
Analysis of Unsteady Flow Characteristics of Centrifugal Pump Under Part Load Based on DDES Turbulence Model
,”
Shock Vib.
, 2021(1), p.
9970800
.10.1155/2021/9970800
38.
Zhang
,
N.
,
Jiang
,
J. X.
,
Gao
,
B.
,
Liu
,
X. K.
, and
Ni
,
D.
,
2020
, “
Numerical Analysis of the Vortical Structure and Its Unsteady Evolution of a Centrifugal Pump
,”
Renewable Energy
,
155
(
155748
), pp.
748
760
.10.1016/j.renene.2020.03.182
39.
Zhang
,
N.
,
Liu
,
X.
,
Gao
,
B.
, and
Xia
,
B.
,
2019
, “
DDES Analysis of the Unsteady Wake Flow and Its Evolution of a Centrifugal Pump
,”
Renewable Energy
,
141
, pp.
570
582
.10.1016/j.renene.2019.04.023
40.
Zhang
,
N.
,
Gao
,
B.
,
Ni
,
D.
, and
Liu
,
X. K.
,
2021
, “
Coherence Analysis to Detect Unsteady Rotating Stall Phenomenon Based on Pressure Pulsation Signals of a Centrifugal Pump
,”
Mech. Syst. Signal Process.
,
148
, p.
107161
.10.1016/j.ymssp.2020.107161
You do not currently have access to this content.