Abstract

This study experimentally investigates the hydrodynamic characteristics of air bubbles within a glass bubble absorber. A swirl generator designed based on the cavity profile introduces swirl motion to the air entering the water column, and high-speed visualization techniques are employed to analyze the resulting bubble behavior. The optimal swirl generator geometry is determined by performing numerical simulations. This study considers still, cocurrent and countercurrent water flow conditions relative to the airflow. Experiments are also conducted to explore the impact of air and water flow rates on bubble characteristics, such as departure diameter, departure time, rise velocity, etc. Visualization studies revealed that the bubble formation phenomenon can be categorized into three different stages: initiation, growth, and detachment. It is observed that the direction of water flow has a significant effect on bubble characteristics. Based on the experimental data, empirical correlations for nondimensional departure bubble diameter have been proposed, which can help estimate the primitive bubble size in a bubble absorber.

References

1.
Sujatha
,
K. S.
,
Mani
,
A.
, and
Murthy
,
S. S.
,
1999
, “
Experiments on a Bubble Absorber
,”
Int. Commun. Heat Mass Transfer
,
26
(
7
), pp.
975
984
.10.1016/S0735-1933(99)00087-1
2.
Akita
,
K.
, and
Yoshida
,
F.
,
1974
, “
Bubble Size, Interfacial Area, and Liquid-Phase Mass Transfer Coefficient in Bubble Columns
,”
Ind. Eng. Chem. Process Des. Dev.
,
13
(
1
), pp.
84
91
.10.1021/i260049a016
3.
Ibarra-Bahena
,
J.
, and
Romero
,
R. J.
,
2014
, “
Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review
,”
Energies
,
7
(
2
), pp.
751
766
.10.3390/en7020751
4.
Tsuge
,
H.
, and
Hibino
,
S. I.
,
1983
, “
Bubble Formation From an Orifice Submerged in Liquids
,”
Chem. Eng. Commun.
,
22
(
1–2
), pp.
63
79
.10.1080/00986448308940046
5.
Al Bábáa
,
H. B.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2016
, “
Correlations of Bubble Diameter and Frequency for Air-Water System Based on Orifice Diameter and Flow Rate
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
114501
.10.1115/1.4033749
6.
Kulkarni
,
A. A.
, and
Joshi
,
J. B.
,
2005
, “
Bubble Formation and Bubble Rise Velocity in Gas-Liquid Systems: A Review
,”
Ind. Eng. Chem. Res.
,
44
(
16
), pp.
5873
5931
.10.1021/ie049131p
7.
Gaddis
,
E. S.
, and
Vogelpohl
,
A.
,
1986
, “
Bubble Formation in Quiescent Liquids Under Constant Flow Conditions
,”
Chem. Eng. Sci.
,
41
(
1
), pp.
97
105
.10.1016/0009-2509(86)85202-2
8.
Jamialahmadi
,
M.
,
Zehtaban
,
M. R.
,
Müller-Steinhagen
,
H.
,
Sarrafi
,
A.
, and
Smith
,
J. M.
,
2001
, “
Study of Bubble Formation Under Constant Flow Conditions
,”
Chem. Eng. Res. Des.
,
79
(
5
), pp.
523
532
.10.1205/02638760152424299
9.
Krishnamurthi
,
S.
,
Kumar
,
R.
, and
Kuloor
,
N. R.
,
1968
, “
Bubble Formation in Viscous Liquids Under Constant Flow Conditions
,”
Ind. Eng. Chem. Fundam.
,
7
(
4
), pp.
549
554
.10.1021/i160028a004
10.
Ramakrishnan
,
S.
,
Kumar
,
R.
, and
Kuloor
,
N. R.
,
1969
, “
Studies in Bubble Formation-I Bubble Formation Under Constant Flow Conditions
,”
Chem. Eng. Sci.
,
24
(
4
), pp.
731
747
.10.1016/0009-2509(69)80065-5
11.
Satyanarayan
,
A.
,
Kumar
,
R.
, and
Kuloor
,
N. R.
,
1969
, “
Studies in Bubble Formation-II Bubble Formation Under Constant Pressure Conditions
,”
Chem. Eng. Sci.
,
24
(
4
), pp.
749
761
.10.1016/0009-2509(69)80066-7
12.
Wraith
,
A. E.
,
1971
, “
Two Stage Bubble Growth at a Submerged Plate Orifice
,”
Chem. Eng. Sci.
,
26
(
10
), pp.
1659
1671
.10.1016/0009-2509(71)86055-4
13.
Das
,
A. K.
,
Das
,
P. K.
, and
Saha
,
P.
,
2011
, “
Formation of Bubbles at Submerged Orifices—Experimental Investigation and Theoretical Prediction
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
618
627
.10.1016/j.expthermflusci.2010.11.015
14.
Gerlach
,
D.
,
Alleborn
,
N.
,
Buwa
,
V.
, and
Durst
,
F.
,
2007
, “
Numerical Simulation of Periodic Bubble Formation at a Submerged Orifice With Constant Gas Flow Rate
,”
Chem. Eng. Sci.
,
62
(
7
), pp.
2109
2125
.10.1016/j.ces.2006.12.061
15.
Bhavaraju
,
S. M.
,
Russell
,
T. W. F.
, and
Blanch
,
H. W.
,
1978
, “
The Design of Gas Sparged Devices for Viscous Liquid Systems
,”
AIChE J.
,
24
(
3
), pp.
454
466
.10.1002/aic.690240310
16.
Bari
,
S. D.
, and
Robinson
,
A. J.
,
2013
, “
Experimental Study of Gas Injected Bubble Growth From Submerged Orifices
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
124
137
.10.1016/j.expthermflusci.2012.06.005
17.
Chuang
,
S. C.
, and
Goldschmidt
,
V. W.
,
1970
, “
Bubble Formation Due to a Submerged Capillary Tube in Quiescent and Coflowing Streams
,”
ASME J. Fluids Eng.
,
92
(
4
), pp.
705
711
.10.1115/1.3425114
18.
Sada
,
E.
,
Yasunishi
,
A.
,
Katoh
,
S.
, and
Nishioka
,
M.
,
1978
, “
Bubble Formation in Flowing Liquid
,”
Can. J. Chem. Eng.
,
56
(
6
), pp.
669
672
.10.1002/cjce.5450560603
19.
Terasaka
,
K.
, and
Tsuge
,
H.
,
1993
, “
Bubble Formation Under Constant-Flow Conditions
,”
Chem. Eng. Sci.
,
48
(
19
), pp.
3417
3422
.10.1016/0009-2509(93)80159-N
20.
Oguz
,
H. N.
, and
Prosperetti
,
A.
,
1993
, “
Dynamics of Bubble Growth and Detachment From a Needle
,”
J. Fluid Mech.
,
257
, pp.
111
145
.10.1017/S0022112093003015
21.
Hasan
,
A. R.
,
Kabir
,
C. S.
, and
Srinivasan
,
S.
,
1994
, “
Countercurrent Bubble and Slug Flows in a Vertical System
,”
Chem. Eng. Sci.
,
49
(
16
), pp.
2567
2574
.10.1016/0009-2509(94)E0084-4
22.
Terasaka
,
K.
,
Tsuge
,
H.
, and
Matsue
,
H.
,
1999
, “
Bubble Formation in Cocurrently Upward Flowing Liquid
,”
Can. J. Chem. Eng.
,
77
(
3
), pp.
458
464
.10.1002/cjce.5450770304
23.
Chakraborty
,
I.
,
Biswas
,
G.
, and
Ghoshdastidar
,
P. S.
,
2011
, “
Bubble Generation in Quiescent and Co-Flowing Liquids
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4673
4688
.10.1016/j.ijheatmasstransfer.2011.06.010
24.
Kantarci
,
N.
,
Borak
,
F.
, and
Ulgen
,
K. O.
,
2005
, “
Bubble Column Reactors
,”
Process Biochem.
,
40
(
7
), pp.
2263
2283
.10.1016/j.procbio.2004.10.004
25.
Jiang
,
M.
,
Xu
,
S.
,
Wu
,
X.
,
Hu
,
J.
, and
Wang
,
W.
,
2016
, “
Visual Experimental Research on the Effect of Nozzle Orifice Structure on R124-DMAC Absorption Process in a Vertical Bubble Tube
,”
Int. J. Refrig.
,
68
, pp.
107
117
.10.1016/j.ijrefrig.2016.04.025
26.
Fernández-Seara
,
J.
,
Sieres
,
J.
,
Rodríguez
,
C.
, and
Vázquez
,
M.
,
2005
, “
Ammonia-Water Absorption in Vertical Tubular Absorbers
,”
Int. J. Therm. Sci.
,
44
(
3
), pp.
277
288
.10.1016/j.ijthermalsci.2004.09.001
27.
Kang
,
Y. T.
,
Nagano
,
T.
, and
Kashiwagi
,
T.
,
2002
, “
Visualization of Bubble Behavior and Bubble Diameter Correlation for NH3-H2O Bubble Absorption
,”
Int. J. Refrig.
,
25
(
1
), pp.
127
135
.10.1016/S0140-7007(00)00045-1
28.
Suresh
,
M.
, and
Mani
,
A.
,
2012
, “
Experimental Studies on Bubble Characteristics for R134a-DMF Bubble Absorber
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
79
89
.10.1016/j.expthermflusci.2012.01.011
29.
Castro
,
J.
,
Oliet
,
C.
,
Rodríguez
,
I.
, and
Oliva
,
A.
,
2009
, “
Comparison of the Performance of Falling Film and Bubble Absorbers for Air-Cooled Absorption Systems
,”
Int. J. Therm. Sci.
,
48
(
7
), pp.
1355
1366
.10.1016/j.ijthermalsci.2008.11.021
30.
Xie
,
G.
,
Sheng
,
G.
,
Bansal
,
P. K.
, and
Li
,
G.
,
2008
, “
Absorber Performance of a Water/Lithium-Bromide Absorption Chiller
,”
Appl. Therm. Eng.
,
28
, pp.
1557
1562
.10.1016/j.applthermaleng.2007.09.014
31.
Amaris
,
C.
,
Bourouis
,
M.
, and
Vallès
,
M.
,
2014
, “
Effect of Advanced Surfaces on the Ammonia Absorption Process With NH3/LiNO3 in a Tubular Bubble Absorber
,”
Int. J. Heat Mass Transf
er,
72
, pp.
544
552
.10.1016/j.ijheatmasstransfer.2014.01.031
32.
Mani
,
A.
,
Tiwari
,
S.
,
Ganesan
,
A. R.
,
Tewari
,
P. K.
,
Elbel
,
S.
, and
Bartosiewicz
,
Y.
,
2021
, “
Solar Desalination and Cold Storage Systems
,” IITM Research Initiatives, Chennai, India, accessed Feb. 18, 2025, https://ioe.iitm.ac.in/project/solar-desalination-and-cold-storage/
33.
Bergles
,
A. E.
,
2002
, “
ExHFT for Fourth Generation Heat Transfer Technology
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
335
344
.10.1016/S0894-1777(02)00145-0
34.
Maradiya
,
C.
,
Vadher
,
J.
, and
Agarwal
,
R.
,
2018
, “
The Heat Transfer Enhancement Techniques and Their Thermal Performance Factor
,”
Beni-Suef Univ. J. Basic Appl. Sci.
,
7
(
1
), pp.
1
21
.10.1016/j.bjbas.2017.10.001
35.
Cerezo
,
J.
,
Best
,
R.
,
Chan
,
J. J.
,
Romero
,
R. J.
,
Hernandez
,
J. I.
, and
Lara
,
F.
,
2017
, “
A Theoretical-Experimental Comparison of an Improved Ammonia-Water Bubble Absorber by Means of a Helical Static Mixer
,”
Energies
,
11
(
1
), p.
56
.10.3390/en11010056
36.
Gül
,
H.
, and
Evin
,
D.
,
2007
, “
Heat Transfer Enhancement in Circular Tubes Using Helical Swirl Generator Insert at the Entrance
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1297
1303
.10.1016/j.ijthermalsci.2006.12.010
37.
Hafsia
,
N. B.
,
Chaouachi
,
B.
, and
Gabsi
,
S.
,
2015
, “
Surface Tension Effects on the Absorption Process in a Spiral Tubular Absorber Working With LiBr-H2O Couple
,”
Int. J. Therm. Sci.
,
94
, pp.
79
89
.10.1016/j.ijthermalsci.2015.02.009
38.
Promvonge
,
P.
, and
Eiamsa-Ard
,
S.
,
2006
, “
Heat Transfer Enhancement in a Tube With Combined Conical-Nozzle Inserts and Swirl Generator
,”
Energy Convers. Manage.
,
47
(
18–19
), pp.
2867
2882
.10.1016/j.enconman.2006.03.034
39.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, UK
.
40.
Kracht
,
W.
, and
Finch
,
J. A.
,
2010
, “
Effect of Frother on Initial Bubble Shape and Velocity
,”
Int. J. Miner. Process.
,
94
(
3–4
), pp.
115
120
.10.1016/j.minpro.2010.01.003
41.
Wang
,
P.
,
Cilliers
,
J. J.
,
Neethling
,
S. J.
, and
Brito-Parada
,
P. R.
,
2019
, “
The Behavior of Rising Bubbles Covered by Particles
,”
Chem. Eng. J.
,
365
, pp.
111
120
.10.1016/j.cej.2019.02.005
You do not currently have access to this content.