Abstract

This research proposes an air-injection treatment for the cavitation phenomena in the Kaplan turbine. An unsteady numerical model is created to predict the cavitating flow through a 3-in. axial hydroturbine before and after the air injection. Pressurized air (jet-in-crossflow) injection is set to be through the turbine housing, and the configuration was altered between 1, 2, 4, and 12 circumferential jets to test the effects of air mass flowrate and injection distribution. Interactions between three fluids (liquid water, water vapor, and air) were considered by utilizing the physics models of volume of fluid (VOF) multiphase, cavitation, and large eddy simulation (LES) turbulence. Surface and time-average results are to be compared with a baseline case of pure cavitation. With the vapor volume fraction created on the rotor components during the cavitation, the absolute pressure scenes clarified the connection between the air treatment and cavitation reduction. While rotation causes negative pressure in the system, the injected air is sucked to such low-pressure zones, and consequently, increasing the absolute pressure above the vapor limit reduces the vapor formation. Preliminary outcomes at 1000 rpm show a 55% reduction in the formed vapor on the blades after air injection by a time corresponding to six cycles of the turbine. A corresponding mechanical power of 12% increase was observed. Moreover, the curve fitting of the data shows that the vapor reduction and power regain are in second order correlation with the increased air volume.

References

1.
Tinguely
,
M.
,
2013
, “
The Effect of Pressure Gradient on the Collapse of Cavitation Bubbles in Normal and Reduced Gravity
,”
Doctoral Dissertation
,
École Polytechnique Fédérale De Lausanne
, Lausanne, Switzerland.https://infoscience.epfl.ch/entities/publication/44b8bd86-cf17-4bd0-9af4-01b8f56b8523
2.
Rus
,
T.
,
Dular
,
M.
,
Širok
,
B.
,
Hočevar
,
M.
, and
Kern
,
I.
,
2007
, “
An Investigation of the Relationship Between Acoustic Emission, Vibration, Noise, and Cavitation Structures on a Kaplan Turbine
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1112
1122
.10.1115/1.2754313
3.
Liu
,
H.
,
Wang
,
Y.
,
Yuan
,
S.
,
Tan
,
M.
, and
Wang
,
K.
,
2010
, “
Effects of Blade Number on Characteristics of Centrifugal Pumps
,”
Chin. J. Mech. Eng.
,
23
(
6
), pp.
742
747
.10.3901/CJME.2010.06.742
4.
Medvitz
,
R. B.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Lindau
,
J. W.
,
Yocum
,
A. M.
, and
Pauley
,
L. L.
,
2002
, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
377
383
.10.1115/1.1457453
5.
Markovic
,
S.
,
2006
, “
Cavitational Wear of the Blades of Francis Turbine
,”
Tribol. Ind.
,
28
(
3&4
), pp.
16
22
.https://www.tribology.rs/journals/2006/3-4/3.pdf
6.
Escaler
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
983
1007
.10.1016/j.ymssp.2004.08.006
7.
Zhi-Yong
,
D.
,
2006
, “
Cavitation Control by Aeration and Its Compressible Characteristics
,”
J. Hydrodyn., Ser. B
,
18
(
4
), pp.
499
504
.10.1016/S1001-6058(06)60126-1
8.
Tomov
,
P.
,
Khelladi
,
S.
,
Ravelet
,
F.
,
Sarraf
,
C.
,
Bakir
,
F.
, and
Vertenoeuil
,
P.
,
2016
, “
Experimental Study of Aerated Cavitation in a Horizontal Venturi Nozzle
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
85
95
.10.1016/j.expthermflusci.2015.08.018
9.
Rivetti
,
A.
,
Angulo
,
M.
,
Lucino
,
C.
, and
Liscia
,
S.
,
2015
, “
Pressurized Air Injection in an Axial Hydro-Turbine Model for The Mitigation of Tip Leakage Cavitation
,”
J. Phys.: Conf. Ser.
,
656
, p.
012069
.10.1088/1742-6596/656/1/012069
10.
Noh
,
W. F.
, and
Woodward
,
P.
,
1976
, “
SLIC (Simple Line Interface Calculation)
,”
Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics
,
Twente University
,
Enschede, NL
, June 28–July 2, Springer Berlin, Heidelberg, pp.
330
340
.
11.
Rayleigh
,
L.
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Phil. Mag.
,
34
(
200
), pp.
94
98
.10.1080/14786440808635681
12.
Plesset
,
M. S.
,
1949
, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
, pp. 277–282.10.1115/1.4009975
13.
Sauer
,
J.
,
2000
, “
Instationaer Kavitierende Stroemungen - Ein Neues Modell, Basierend Auf Front Capturing VOF Und Blasendynamik
,”
Dissertation
,
Universität Karlsruhe, Germany
.10.5445/IR/3122000
14.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.[Mismatch ]10.1023/A:1009995426001
15.
ElGammal
,
T.
,
Yen
,
Y. H.
,
Amano
,
R. S.
,
Millevolte
,
J.
,
Muller
,
R. J.
, and
Lequesne
,
B.
,
2016
, “
Numerical Investigations on Intake Tube Design of Micro Kaplan Hydro-Turbine System
,”
ASME
Paper No. FEDSM2016-7569.10.1115/FEDSM2016-7569
16.
Yen
,
Y. H.
,
ElGammal
,
T.
,
Amano
,
R. S.
,
Millevolte
,
J.
,
Muller
,
R. J.
, and
Lequesne
,
B.
,
2016
, “
Numerical Optimization of Micro Kaplan Hydro Turbine System
,”
ASME
Paper No. FEDSM2016-7575.10.1115/FEDSM2016-7575
You do not currently have access to this content.