Abstract

Hydraulic axial turbines are more frequently utilized for grid regulation purposes. Sometimes, they must be operated at speed-no-load (SNL) conditions, which is characterized for some machines by a varying number of large vortical flow structures extending from the vaneless space to the draft tube, introducing detrimental pressure pulsations throughout the turbine. A recent study shows that the vortices can be mitigated by individually controlling the guide vanes. Since optimization of the distributor layout is linked with a large degree-of-freedom, machine learning is deployed to assist in finding an optimal setup cost-effectively. A reduced numerical computational-fluid-dynamics (CFD) model is built and used to generate input for Gaussian process regression surrogate models by performing 2000 steady-state simulations with varying distributor layouts. The surrogate models suggest that the optimal layout is to open seven out of 20 guide vanes in succession while keeping the remaining ones closed. However, this configuration induces large radial forces on the runner, and after implementing some modifications by trial and error, detailed time-dependent CFD simulations show that placing 4 + 3 opened guide vanes on opposite sides of the runner axis is better; it reduces the pressure peaks corresponding to a two- and three-vortex configuration, and the maximal pressure pulsations by as much as 88% in the vaneless space compared to regular SNL operation. Meanwhile, the radial force on the runner is reduced by more than 83%, and pressure pulsations on the runner blades by more than 55%, compared to the surrogate models' optimal layout prediction.

References

1.
IEA
,
2022
,
World Energy Outlook 2022
,
IEA
,
Paris
.
2.
Hutchinson
,
M.
, and
Zhao
,
F.
,
2023
,
Global WInd Report 2023
,
Global Wind Energy
,
Brussels, Belgium
.
3.
Notton
,
G.
,
Nivet
,
M.
,
Voyant
,
C.
,
Paoli
,
C.
,
Darras
,
C.
,
Motte
,
F.
, and
Fouilloy
,
A.
,
2018
, “
Intermittent and Stochastic Character of Renewable Energy Sources: Consequences, Cost of Intermittence and Benefit of Forecasting
,”
Renewable Sustainable Energy Rev.
,
87
, pp.
96
105
.10.1016/j.rser.2018.02.007
4.
Yang
,
W.
,
Norrlund
,
P.
,
Saarinen
,
L.
,
Witt
,
A.
,
Smith
,
B.
,
Yang
,
J.
, and
Lundin
,
U.
,
2018
, “
Burden on Hydropower Units for Short-Term
,”
Nat. Commun.
,
9
(
1
), pp.
1
12
.10.1038/s41467-018-05060-4
5.
Xie
,
J.
,
Zheng
,
Y.
,
Pan
,
X.
,
Zheng
,
Y.
,
Zhang
,
L.
, and
Zhan
,
Y.
,
2021
, “
A Short-Term Optimal Scheduling Model for Wind Solar-Hydro Hybrid Generation System With Cascade Hydropower Considering Regulation Reserve and Spinning Reserve Requirements
,”
IEEE Access
,
9
, pp.
10765
10777
.10.1109/ACCESS.2021.3049280
6.
Půlpitel
,
L.
,
Skoták
,
A.
, and
Koutník
,
J.
,
1996
, “
Vortices Rotating in the Vaneless Space of a Kaplan Turbine Operating Under Off-Cam High Swirl Flow Conditions
,”
Hydraulic Machinery and Cavitation
,
Springer
,
Dordrecht, The Netherlands
, pp.
925
934
.
7.
Jonsson
,
P. P.
,
Nässelqvist
,
M. L.
,
Mulu
,
B. G.
, and
Högström
,
C. M.
,
2022
, “
Procedure to Minimize Rotor Vibrations From Flow-Induced Excitations in Kaplan Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
1079
(
1
), p.
012098
.10.1088/1755-1315/1079/1/012098
8.
Iovănel
,
R.
,
Dehkharqani
,
A.
, and
Cervantes
,
M.
,
2022
, “
Numerical Simulation of a Kaplan Prototype During Speed-No-Load Operation
,”
Energies
,
15
(
14
), p.
5072
.10.3390/en15145072
9.
Houde
,
S.
,
Dumas
,
G.
, and
Deschênes
,
C.
,
2018
, “
Experimental and Numerical Investigations on the Origins of Rotating Stall in a Propeller Turbine Runner Operating in No-Load Conditions
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111104
.10.1115/1.4039713
10.
Bourgeois
,
J.
, and
Houde
,
S.
,
2023
, “
Investigations of Spoilers to Mitigate Columnar Vortices in Propeller Turbines at Speed-No-Load Based on Steady and Unsteady Flow Simulation
,”
ASME J. Fluids Eng.
,
145
(
11
), p.
111202
.10.1115/1.4062645
11.
Kranenbarg
,
J.
,
Jonsson
,
P. P.
,
Mulu
,
B. G.
, and
Cervantes
,
M. J.
,
2023
, “
Mitigation of the Pressure Pulsation in an Axial Turbine at Speed-No-Load With Independent Guide Vanes Opening
,”
ASME J. Fluids Eng.
,
145
(
11
), p.
111204
.10.1115/1.4062823
12.
MathWorks
,
2023
,
Discrete Math Documentation
,
The MathWorks Inc
,
Natick, MA
.
13.
Rasmussen
,
C. E.
, and
Williams
,
C. K.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
14.
Fahlbeck
,
J.
,
Nilsson
,
H.
, and
Salehi
,
S.
,
2023
, “
Surrogate Based Optimisation of a Pump Mode Startup Sequence for a Contra-Rotating Pump-Turbine Using a Genetic Algorithm and Computational Fluid Dynamics
,”
J. Energy Storage
,
62
, p.
106902
.10.1016/j.est.2023.106902
15.
Masood
,
Z.
,
Khan
,
S.
, and
Qian
,
L.
,
2021
, “
Machine Learning-Based Surrogate Model for Accelerating Simulation-Driven Optimisation of Hydropower Kaplan Turbine
,”
Renewable Energy
,
173
, pp.
827
848
.10.1016/j.renene.2021.04.005
16.
Roig
,
R.
,
Sánchez-Botello
,
X.
,
Escaler
,
X.
,
Mulu
,
B.
, and
Högström
,
C.-M.
,
2022
, “
On the Rotating Vortex Rope and Its Induced Structural Response in a Kaplan Turbine Model
,”
Energies
,
15
(
17
), p.
6311
.10.3390/en15176311
17.
ANSYS
,
2023
,
Ansys CFX-Solver Theory Guide
,
Ansys
,
Canonsburg, PA
.
18.
Ferziger
,
J. H.
,
Perić
,
M.
, and
Street
,
R. L.
,
2019
,
Computational Methods for Fluid Dynamics
,
Springer
, Cham, Switzerland.
19.
Nennemann
,
B.
,
Morissette
,
J.
,
Chamberland-Lauzon
,
J.
,
Monette
,
C.
,
Braun
,
O.
,
Melot
,
M.
,
Coutu
,
A.
,
Nicolle
,
J.
, and
Giroux
,
A. M.
,
2014
, “
Challenges in Dynamic Pressure and Stress Predictions at No-Load Operation in Hydraulic Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
032055
.10.1088/1755-1315/22/3/032055
20.
Kranenbarg
,
J.
,
Jonsson
,
P. P.
,
Mulu
,
B. G.
, and
Cervantes
,
M. J.
,
2023
, “
Uncertainty in the Numerical Prediction of the Tangential Velocity in Axial Turbines at Part Load Operations: A Parametric Study
,”
Energy Rep.
,
10
, pp.
2597
2611
.10.1016/j.egyr.2023.09.054
21.
Saeedipour
,
M.
,
2023
, “
An Enstrophy-Based Analysis of the Turbulence–Interface Interactions Across the Scales
,”
Int. J. Multiphase Flow
,
164
, p.
104449
.10.1016/j.ijmultiphaseflow.2023.104449
22.
Liu
,
Z.
, and
Karimi
,
I. A.
,
2020
, “
Gas Turbine Performance Prediction Via Machine Learning
,”
Energy
,
192
, p.
116627
.10.1016/j.energy.2019.116627
23.
Yetkin
,
S.
,
Abuhanieh
,
S.
, and
Yigit
,
S.
,
2024
, “
Investigation on the Abilities of Different Artificial Intelligence Methods to Predict the Aerodynamic Coefficients
,”
Expert Syst. Appl.
,
237
, p.
121324
.10.1016/j.eswa.2023.121324
24.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, Hoboken, NJ.
25.
Pasche
,
S.
,
2018
, “
Dynamics and Optimal Control of Self-Sustained Instabilities in Laminar and Turbulent Swirling Flows: Application to the Part Load Vortex Rope in Francis Turbines
,” Report No. 8363,
EPFL
,
Lausanne
.
26.
Joßberger
,
S.
, and
Riedelbauch
,
S.
,
2023
, “
Scale-Resolving Hybrid RANS-LES Simulation of a Model Kaplan Turbine on a 400-Million-Element Mesh
,”
Int. J. Turbomach. Propuls. Power
,
8
(
3
), p.
26
.10.3390/ijtpp8030026
You do not currently have access to this content.