Abstract

New criteria for fully resolving two-phase flow regime transitions using direct numerical simulation with the level set method for interface capturing are proposed. A series of flows chosen to capture small scale interface phenomena are simulated at different grid refinements. These cases include droplet deformation and breakup in a simple shear field, the thin film around a Taylor bubble, and the rise of a bubble toward a free surface. These cases cover the major small scale phenomena observed in two-phase flows: internal recirculation, interface curvature, interface snapping, flow of liquid in thin films, and drainage/snapping of thin films. The results from these simulations and their associated grid studies were used to develop new meshing requirements for simulation of two-phase flow using interface capturing methods, in particular the level set method. When applicable, the code used in this work, PHASTA, was compared to experiments in order to contribute to the ongoing validation process of the code. Results show that when the solver meets these criteria, with the exception of resolving the nanometer scale liquid film between coalescing bubbles, the code is capable of accurately simulating interface topology changes.

References

1.
Pope
,
S. B.
,
2000
,
Turbulent Flow
,
Cambridge University Press
,
Cambridge, UK
.
2.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.10.1146/annurev.fluid.30.1.539
3.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Re_Tau=590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
4.
Lee
,
M.
, and
Moser
,
R. D.
,
2015
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Re_Tau=5200
,”
J. Fluid Mech.
,
774
, pp.
395
415
.10.1017/jfm.2015.268
5.
Lee
,
M.
,
Malaya
,
N.
, and
Moser
,
R. D.
,
2013
, “
Petascale Direct Numerical Simulation of Turbulent Channel Flow on Up to 786K Cores
,”
International Conference on High Performance Computing, in Networking, Storage and Analysis
,
Denver, CO
, Nov.
17
22
.10.1145/2503210.2503298
6.
Winter
,
J. W.
,
Vijuk
,
R. P.
, and
Cummins
,
W. E.
,
2004
, “
AP1000 Design Control Document
,”
Westinghouse Electric Company LLC
,
Pittsburgh, PA
.
7.
GE Nuclear Energy
,
1997
, “
ABWR Design Control Document Rev. 4
,” GE Nuclear Energy, Report No. ML11126A101,
8.
Feng
,
J.
, and
Bolotnov
,
I. A.
,
2017
, “
Evaluation of Bubble-Induced Turbulence Using Direct Numerical Simulation
,”
Int. J. Multiphase Flow
,
93
, pp.
92
107
.10.1016/j.ijmultiphaseflow.2017.04.003
9.
Trofimova
,
A. V.
,
Tejada-Martínez
,
A. E.
,
Jansen
,
K. E.
, and
Lahey
,
R. T.
,
2009
, “
Direct Numerical Simulation of Turbulent Channel Flows Using Stabilized Finite Element Method
,”
Comput. Fluids
,
38
(
4
), pp.
924
938
.10.1016/j.compfluid.2008.10.003
10.
Zimmer
,
M. D.
, and
Bolotnov
,
I. A.
,
2019
, “
Slug-to-Churn Vertical Two-Phase Flow Regime Transition Study Using an Interface Tracking Approach
,”
Int. J. Multiphase Flow
,
115
, pp.
196
206
.10.1016/j.ijmultiphaseflow.2019.04.003
11.
Zimmer
,
M. D.
, and
Bolotnov
,
I. A.
,
2020
, “
Exploring Two-Phase Flow Regime Transition Mechanisms Using High Resolution Virtual Experiments
,”
Nucl. Sci. Eng.
,
194
(
8–9
), pp.
708
720
.10.1080/00295639.2020.1722543
12.
Fang
,
J.
, and
Bolotnov
,
I. A.
,
2017
, “
Bubble Tracking Analysis of PWR Two-Phase Flow Simulations Based on the Level Set Method
,”
Nucl. Eng. Des.
,
323
, pp.
68
77
.10.1016/j.nucengdes.2017.07.034
13.
Bunner
,
B.
, and
Tryggvason
,
G.
,
1999
, “
Direct Numerical Simulation of Three-Dimensional Bubbly Flows
,”
Phys. Fluids
,
11
(
8
), pp.
1967
1969
.10.1063/1.870105
14.
Karam
,
H. J.
, and
Bellinger
,
J. C.
,
1968
, “
Deformation and Breakup of Liquid Droplets in a Simple Shear Field
,”
Ind. Eng. Chem. Fundam.
,
7
(
4
), pp.
576
581
.10.1021/i160028a009
15.
Kirkpatrick
,
R. D.
, and
Lockett
,
M. J.
,
1974
, “
The Influence of Approach Velocity on Bubble Coalescence
,”
Chem. Eng. Sci.
,
29
(
12
), pp.
2363
2373
.10.1016/0009-2509(74)80013-8
16.
Morokuma
,
T.
, and
Utaka
,
Y.
,
2016
, “
Variation of the Liquid Film Thickness Distribution Between Contacting Twin Air Bubbles During the Coalescence Process in Water and Ethanol Pools
,”
Int. J. Heat Mass Transfer
,
98
, pp.
96
107
.10.1016/j.ijheatmasstransfer.2016.02.090
17.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
,
2002
, “
Verification and Validation in Computational Fluid Dynamics
,”
Prog. Aerosp. Sci.
,
38
(
3
), pp.
209
272
.10.1016/S0376-0421(02)00005-2
18.
Lee
,
J. Y.
,
Ishii
,
M.
, and
Kim
,
N. S.
,
2008
, “
Instantaneous and Objective Flow Regime Identification Method for the Vertical Upward and Downward co-Current Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3442
3459
.10.1016/j.ijheatmasstransfer.2007.10.037
19.
Whiting
,
C. H.
,
1999
, “
Stabilized Finite Element Methods for Fluid Dynamics Using a Hierarchical Basis
,”
Ph.D. thesis
,
Rensselaer Polytechnic Institute
,
Troy, NY
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.587.7534&rep=rep1&type=pdf
20.
Nagrath
,
S.
,
2004
, “
Adapative Stabilized Finite Element Analysis of Multi-Phase Flows Using a Level Set Approach
,”
Ph.D. thesis
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
21.
Nagrath
,
S.
,
Jansen
,
K. E.
, and
Lahey
,
R. T.
, Jr.
,
2005
, “
Computation of Incompressible Bubble Dynamics With a Stabilized Finite Element Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
42–44
), pp.
4565
4587
.10.1016/j.cma.2004.11.012
22.
Jansen
,
K. E.
,
1999
, “
A Stabilized Finite Element Method for Computing Turbulence
,”
Comput. Methods Appl. Mech. Eng.
,
174
(
3–4
), pp.
299
317
.10.1016/S0045-7825(98)00301-6
23.
Lahey
,
R. T.
, Jr.
,
2009
, “
On the Direct Numerical Simulation of Two-Phase Flows
,”
Nucl. Eng. Des.
,
239
(
5
), pp.
867
879
.10.1016/j.nucengdes.2008.06.020
24.
Behafarid
,
F.
,
Jansen
,
K. E.
, and
Podowski
,
M. Z.
,
2015
, “
A Study on Large Bubble Motion and Liquid Film in Vertical Pipes and Inclined Narrow Channels
,”
Int. J. Multiphase Flow
,
75
, pp.
288
299
.10.1016/j.ijmultiphaseflow.2015.04.016
25.
Bolotnov
,
I. A.
,
2013
, “
Influence of Bubbles on the Turbulence Anisotropy
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051301
.10.1115/1.4023651
26.
Rodriguiez
,
J. M.
,
2009
, “
Numerical Simulation of Two-Phase Annular Flow
,” Ph.D. thesis,
Rensselaer Polytechnic Institute
,
Troy, NY
.
27.
Li
,
M.
, and
Bolotnov
,
I. A.
,
2018
, “
Development of Evaporation and Condensation Model - Pool Boiling Simulation Using ITM Approach
,”
Trans. Am. Nucl. Soc.
,
118
, pp.
1038
1041
.https://www.researchgate.net/publication/323184183_Development_of_Evaporation_and_Condensation_Model_-_Pool_Boiling_Simulation_using_ITM_approach
28.
Li
,
K.
,
Zeng
,
K.
,
Wonnell
,
L.
, and
Bolotnov
,
I. A.
,
2019
, “
Development of a New Contact Angle Control Algorithm for Level-Set Method
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061301
.10.1115/1.4041987
29.
Whiting
,
C. H.
, and
Jansen
,
K. E.
,
2001
, “
A Stabilized Finite Element Method for the Incompressible Navier-Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Fluids
,
35
(
1
), pp.
93
116
.10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
30.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
,
Cambridge, UK
.
31.
Sussman
,
M.
, and
Fatemi
,
E.
,
1999
, “
An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow
,”
SIAM J. Sci. Comput.
,
20
(
4
), pp.
1165
1191
.10.1137/S1064827596298245
32.
Sussman
,
M.
,
Almrgen
,
A. S.
,
Bell
,
J. B.
,
Colella
,
P.
,
Howell
,
L. H.
, and
Welcome
,
M. L.
,
1999
, “
An Adaptive Level Set Approach for Incompressible Two-Phase Flows
,”
148
, pp.
81
124
.
33.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Application
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
34.
Thomas
,
A. M.
,
Fang
,
J.
, and
Bolotnov
,
2015
, “
Estimation of Shear-Induced Lift Force in Laminar and Turbulent Flows
,”
Nucl. Technol.
,
160
, pp.
274
291
.10.13182/NT14-72
35.
Ayachit
,
U.
,
2019
,
The Paraview Guide
,
Kitware, Inc.
,
New York
.
36.
Fan
,
Y.
,
Fang
,
J.
, and
Bolotnov
,
I. A.
,
2021
, “
Complex Bubble Deformation and Break-Up Dynamics Studies Using Interface Capturing Approach
,”
Exp. Comput. Multiphase Flow
,
3
(
3
), pp.
139
151
.10.1007/s42757-020-0073-3
37.
Nogueira
,
S.
,
Riethmuler
,
M. L.
,
Campos
,
J. B. L. M.
, and
Pinto
,
A. M. F. R.
,
2006
, “
Flow in the Nose Region and Annular Film Around a Taylor Bubble Rising Through Vertical Columns of Stagnant and Flowing Newtonian Fluids
,”
Chem. Eng. Sci.
,
61
(
2
), pp.
845
857
.10.1016/j.ces.2005.07.038
38.
Nogueira
,
S.
,
Riethmuller
,
M. L.
,
Campos
,
J. B. L. M.
, and
Pinto
,
A. M. F. R.
,
2006
, “
Flow Patterns in the Wake of a Taylor Bubble Rising Though Vertical Columns of Stagnant and Flowing Newtonian Liquids: An Experimental Study
,”
Chem. Eng. Sci.
,
61
(
22
), pp.
7199
7212
.10.1016/j.ces.2006.08.002
39.
Llewellin
,
E. W.
,
Del Bello
,
E.
,
Taddeucci
,
J.
,
Scarlato
,
P.
, and
Lane
,
S. J.
,
2012
, “
The Thickness of the Falling Film of Liquid Around a Taylor Bubble
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
468
(
2140
), pp.
1041
1064
.10.1098/rspa.2011.0476
40.
Karapantsios
,
T. D.
,
Paras
,
S. V.
, and
Karabelas
,
A. J.
,
1989
, “
Statistical Characteristics of Free Falling Films at High Reynolds Numbers
,”
Int. J. Multiohase Flow
,
15
(
1
), pp.
1
21
.10.1016/0301-9322(89)90082-7
41.
Nicklin
,
D. J.
,
Wilkes
,
J. O.
, and
Davidson
,
J. F.
,
1962
, “
Two-Phase Flow in Vertical Tubes
,”
Trans. Inst. Chem. Eng.
,
40
, pp.
61
68
.
42.
Hayashi
,
K.
,
Kurimoto
,
R.
, and
Tomiyama
,
A.
,
2011
, “
Terminal Velocity of a Taylor Drop in a Vertical Pipe
,”
Int. J. Multiphase Flow
,
37
(
3
), pp.
241
251
.10.1016/j.ijmultiphaseflow.2010.10.008
43.
Sunol
,
F.
, and
Gonzalez-Cinca
,
R.
,
2010
, “
Rise, Bouncing and Coalescence of Bubbles Impacting at a Free Surface
,”
Colloids Surf. A; Physiochemical Eng. Aspects
,
365
, pp.
36
42
.10.1016/j.colsurfa.2010.01.032
44.
Talley
,
M. L.
,
Zimmer
,
M. D.
, and
Bolotnov
,
I. A.
,
2017
, “
Coalescence Prevention Algortihm for Level-Set Method
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081301
.10.1115/1.4036246
45.
Mishima
,
K.
, and
Ishii
,
M.
,
1984
, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
723
737
.10.1016/0017-9310(84)90142-X
46.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
Am. Inst. Chem. Eng. J.
,
26
(
3
), pp.
345
354
.10.1002/aic.690260304
47.
Bergles
,
A. E.
,
Roos
,
J. P.
, and
Bourne
,
J. G.
,
1968
, “
Investigation of Boiling Flow Regimes and Critical Heat Flux,
Quarterly Progress Report, Aug. 1, 1966–Mar. 15, 1967,” Dynatech Corp., Cambridge, MA, Report No. 724.
48.
Evans
,
G. M.
,
Machniewski
,
P. M.
, and
Biń
,
A. K.
,
2004
, “
Bubble Size Distribution and Void Fraction in the Wake Region Below a Ventilated Gas Cavity in Downward Pipe Flow
,”
Chem. Eng. Res. Des.
,
82
(
9
), pp.
1095
1104
.10.1205/cerd.82.9.1095.44168
49.
Lehr
,
F.
,
Millies
,
M.
, and
Mewes
,
D.
,
2002
, “
Bubble-Size Distribution and Flow Fields in Bubbles Columns
,”
Fluid Mech. Transp. Phenom.
,
48
(
11
), pp.
2426
2443
.10.1002/aic.690481103
You do not currently have access to this content.