Abstract

This study simulates pore-scale two-dimensional flows through porous media composed of circular grains with varied pore-scale heterogeneity to analyze non-Darcy flow effects on different types of porous media using the lattice Boltzmann method. The magnitude of non-Darcy coefficients and the critical Reynolds number of non-Darcy flow were computed from the simulation results using the Forchheimer equation. Although the simulated porous materials have similar porosity and representative grain diameters, larger non-Darcy coefficients and an earlier onset of non-Darcy flow were observed for more heterogeneous porous media. The simulation results were compared with existing correlations to predict non-Darcy coefficients, and the large sensitivity of non-Darcy coefficients to pore-scale heterogeneity was identified. The pore-scale heterogeneity and resulting flow fields were evaluated using the participation number. From the computed participation numbers and visualized flow fields, a significant channeling effect for heterogeneous media in the Darcy flow regime was confirmed compared with that for homogeneous media. However, when non-Darcy flow occurs, this channeling effect was alleviated. This study characterizes non-Darcy effect with alleviation of the channeling effect quantified with an increase in participation number. Our findings indicate a strong sensitivity of magnitude and onset of non-Darcy effect to pore-scale heterogeneity and imply the possibility of evaluating non-Darcy effect through numerical analysis of the channeling effect.

References

1.
Bear
,
J.
,
2013
,
Dynamics of Fluids in Porous Media
,
Courier Corporation
, New York.
2.
Blunt
,
M. J.
,
2017
,
Multiphase Flow in Permeable Media: A Pore-Scale Perspective
,
Cambridge University Press
, Cambridge, UK.
3.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung Durch Boden
,”
Z. Ver. Deutsch, Ing.
,
45
, pp.
1782
1788
.
4.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
5.
Takhanov
,
D.
,
2011
, “
Forchheimer Model for Non-Darcy Flow in Porous Media and Fractures
,” Master's thesis,
Imperial College London
, London, UK.
6.
Yazdchi
,
K.
, and
Luding
,
S.
,
2012
, “
Towards Unified Drag Laws for Inertial Flow Through Fibrous Materials
,”
Chem. Eng. J.
,
207–208
, pp.
35
48
.10.1016/j.cej.2012.06.140
7.
Otaru
,
A.
, and
Kennedy
,
A.
,
2019
, “
Investigation of the Pressure Drop Across Packed Beds of Spherical Beads: Comparison of Empirical Models With Pore-Level Computational Fluid Dynamics Simulations
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071305
.10.1115/1.4042957
8.
Coulaud
,
O.
,
Morel
,
P.
, and
Caltagirone
,
J.
,
1988
, “
Numerical Modelling of Nonlinear Effects in Laminar Flow Through a Porous Medium
,”
J. Fluid Mech.
,
190
, pp.
393
407
.10.1017/S0022112088001375
9.
Lee
,
S.
, and
Yang
,
J.
,
1997
, “
Modeling of Darcy-Forchheimer Drag for Fluid Flow Across a Bank of Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3149
3155
.10.1016/S0017-9310(96)00347-X
10.
Fourar
,
M.
,
Radilla
,
G.
,
Lenormand
,
R.
, and
Moyne
,
C.
,
2004
, “
On the Non-Linear Behavior of a Laminar Single-Phase Flow Through Two and Three-Dimensional Porous Media
,”
Adv. Water Resource
,
27
(
6
), pp.
669
677
.10.1016/j.advwatres.2004.02.021
11.
Muljadi
,
B. P.
,
Blunt
,
M. J.
,
Raeini
,
A. Q.
, and
Bijeljic
,
B.
,
2016
, “
The Impact of Porous Media Heterogeneity on Non-Darcy Flow Behaviour From Pore-Scale Simulation
,”
Adv. Water Resource
,
95
, pp.
329
340
.10.1016/j.advwatres.2015.05.019
12.
Kakouei
,
A.
,
Vatani
,
A.
,
Rasaei
,
M.
,
Sola
,
B. S.
, and
Moqtaderi
,
H.
,
2017
, “
Cessation of Darcy Regime in Gas Flow Through Porous Media Using LBM: Comparison of Pressure Gradient Approaches
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
693
705
.10.1016/j.jngse.2017.06.018
13.
Cheng
,
Z.
,
Ning
,
Z.
,
Wang
,
Q.
,
Zeng
,
Y.
,
Qi
,
R.
,
Huang
,
L.
, and
Zhang
,
W.
,
2019
, “
The Effect of Pore Structure on Non-Darcy Flow in Porous Media Using the Lattice Boltzmann Method
,”
J. Pet. Sci. Eng.
,
172
, pp.
391
400
.10.1016/j.petrol.2018.09.066
14.
Wang
,
Y.
,
Ahmadi
,
A.
, and
Lasseux
,
D.
,
2019
, “
On the Inertial Single Phase Flow in 2D Model Porous Media: Role of Microscopic Structural Disorder
,”
Transp. Porous Media
,
128
(
1
), pp.
201
220
.10.1007/s11242-019-01241-x
15.
Chai
,
Z.
,
Shi
,
B.
,
Lu
,
J.
, and
Guo
,
Z.
,
2010
, “
Non-Darcy Flow in Disordered Porous Media: A Lattice Boltzmann Study
,”
Comput. Fluids
,
39
(
10
), pp.
2069
2077
.10.1016/j.compfluid.2010.07.012
16.
Newman
,
M. S.
, and
Yin
,
X.
,
2013
, “
Lattice Boltzmann Simulation of Non-Darcy Flow in Stochastically Generated 2D Porous Media Geometries
,”
SPE J.
,
18
(
01
), pp.
12
26
.10.2118/146689-PA
17.
Thauvin
,
F.
, and
Mohanty
,
K.
,
1998
, “
Network Modeling of Non-Darcy Flow Through Porous Media
,”
Transp. Porous Media
,
31
(
1
), pp.
19
37
.10.1023/A:1006558926606
18.
Ma
,
H.
, and
Ruth
,
D.
,
1993
, “
The Microscopic Analysis of High Forchheimer Number Flow in Porous Media
,”
Transp. Porous Media
,
13
(
2
), pp.
139
160
.10.1007/BF00654407
19.
Zeng
,
Z.
, and
Grigg
,
R.
,
2006
, “
A Criterion for Non-Darcy Flow in Porous Media
,”
Transp. Porous Media
,
63
(
1
), pp.
57
69
.10.1007/s11242-005-2720-3
20.
Chukwudozie
,
C.
,
Tyagi
,
M.
,
Sears
,
S.
, and
White
,
C.
,
2012
, “
Prediction of Non-Darcy Coefficients for Inertial Flows Through the Castlegate Sandstone Using Image-Based Modeling
,”
Transp. Porous Media
,
95
(
3
), pp.
563
580
.10.1007/s11242-012-0062-5
21.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
65
(
4
), p.
046308
.10.1103/PhysRevE.65.046308
22.
Chai
,
Z.
, and
Zhao
,
T.
,
2012
, “
Effect of the Forcing Term in the Multiple-Relaxation-Time Lattice Boltzmann Equation on the Shear Stress or the Strain Rate Tensor
,”
Phys. Rev. E
,
86
(
1
), p.
016705
.10.1103/PhysRevE.86.016705
23.
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
(
6
), pp.
6546
6562
.10.1103/PhysRevE.61.6546
24.
Krüger
,
T.
,
Kusumaatmaja
,
H.
,
Kuzmin
,
A.
,
Shardt
,
O.
,
Silva
,
G.
, and
Viggen
,
E. M.
,
2017
,
The Lattice Boltzmann Method
,
Springer International Publishing
, Cham, Switzerland.
25.
Chai
,
Z.
,
Shi
,
B.
, and
Guo
,
Z.
,
2016
, “
A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection–Diffusion Equations
,”
J. Sci. Comput.
,
69
(
1
), pp.
355
390
.10.1007/s10915-016-0198-5
26.
Huang
,
H.
,
Sukop
,
M.
, and
Lu
,
X.
,
2015
,
Multiphase Lattice Boltzmann Methods: Theory and Application
,
Wiley
, West Sussex, UK.
27.
d'Humières
,
D.
,
1992
, “
Generalized Lattice–Boltzmann Equations
,”
Rarefied Gas Dynamics: Theory and Simulations
,
B. D.
Shizgal
, and
D. P.
Weaver
, eds., Vol.
159
,
American Institute of Aeronautics and Astronautics
, Washington, DC, pp.
450
458
.
28.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
29.
Zheng
,
J.
,
Wang
,
Z.
,
Gong
,
W.
,
Ju
,
Y.
, and
Wang
,
M.
,
2017
, “
Characterization of Nanopore Morphology of Shale and Its Effects on Gas Permeability
,”
J. Nat. Gas Sci. Eng.
,
47
, pp.
83
90
.10.1016/j.jngse.2017.10.004
30.
Latt
,
J.
,
2007
, “
Hydrodynamic Limit of Lattice Boltzmann Equations
,” Ph.D. thesis,
University of Geneva
, Geneva, Switzerland.
31.
Latt
,
J.
,
Chopard
,
B.
,
Malaspinas
,
O.
,
Deville
,
M.
, and
Michler
,
A.
,
2008
, “
Straight Velocity Boundaries in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
77
(
5
), p.
056703
.10.1103/PhysRevE.77.056703
32.
Narváez
,
A.
,
Yazdchi
,
K.
,
Luding
,
S.
, and
Harting
,
J.
,
2013
, “
From Creeping to Inertial Flow in Porous Media: A Lattice Boltzmann–Finite Element Study
,”
J. Stat. Mech. Theory Exp.
,
2013
(
2
), p.
P02038
.10.1088/1742-5468/2013/02/P02038
33.
Zacharoudiou
,
I.
,
Boek
,
E. S.
, and
Crawshaw
,
J.
,
2018
, “
The Impact of Drainage Displacement Patterns and Haines Jumps on CO2 Storage Efficiency
,”
Sci. Rep.
,
8
(
1
), pp.
1
13
.10.1038/s41598-018-33502-y
34.
Comiti
,
J.
,
Sabiri
,
N.
, and
Montillet
,
A.
,
2000
, “
Experimental Characterization of Flow Regimes in Various Porous Media—III: Limit of Darcy's or Creeping Flow Regime for Newtonian and Purely Viscous Non-Newtonian Fluids
,”
Chem. Eng. Sci.
,
55
(
15
), pp.
3057
3061
.10.1016/S0009-2509(99)00556-4
35.
Mei
,
C.
, and
Auriault
,
J.-L.
,
1991
, “
The Effect of Weak Inertia on Flow Through a Porous Medium
,”
J. Fluid Mech.
,
222
(
1
), pp.
647
663
.10.1017/S0022112091001258
36.
Barree
,
R.
, and
Conway
,
M.
,
2004
, “
Beyond Beta Factors: A Complete Model for Darcy, Forchheimer, and Trans-Forchheimer Flow in Porous Media
,” SPE Annual Technical Conference and Exhibition,
Society of Petroleum Engineers
, Houston, TX, Sept. 26–29, SPE Paper No.
SPE-89325-MS
.10.2118/89325-MS
37.
Sukop
,
M. C.
,
Huang
,
H.
,
Alvarez
,
P. F.
,
Variano
,
E. A.
, and
Cunningham
,
K. J.
,
2013
, “
Evaluation of Permeability and Non-Darcy Flow in Vuggy Macroporous Limestone Aquifer Samples With Lattice Boltzmann Methods
,”
Water Resource Res.
,
49
(
1
), pp.
216
230
.10.1029/2011WR011788
38.
Lasseux
,
D.
,
Abbasian Arani
,
A. A.
, and
Ahmadi
,
A.
,
2011
, “
On the Stationary Macroscopic Inertial Effects for One Phase Flow in Ordered and Disordered Porous Media
,”
Phys. Fluids
,
23
(
7
), p.
073103
.10.1063/1.3615514
39.
Wu
,
J.
,
Yu
,
B.
, and
Yun
,
M.
,
2008
, “
A Resistance Model for Flow Through Porous Media
,”
Transp. Porous Media
,
71
(
3
), pp.
331
343
.10.1007/s11242-007-9129-0
40.
Wu
,
J.
,
Hu
,
D.
,
Li
,
W.
, and
Cai
,
X.
,
2016
, “
A Review on Non-Darcy Flow-Forchheimer Equation, Hydraulic Radius Model, Fractal Model and Experiment
,”
Fractals
,
24
(
02
), p.
1630001
.10.1142/S0218348X16300014
41.
Yang
,
P.
,
Wen
,
Z.
,
Dou
,
R.
, and
Liu
,
X.
,
2016
, “
Effect of Random Structure on Permeability and Heat Transfer Characteristics for Flow in 2D Porous Medium Based on MRT Lattice Boltzmann Method
,”
Phys. Lett. A
,
380
(
37
), pp.
2902
2911
.10.1016/j.physleta.2016.06.049
42.
Tsang
,
C.-F.
, and
Neretnieks
,
I.
,
1998
, “
Flow Channeling in Heterogeneous Fractured Rocks
,”
Rev. Geophys.
,
36
(
2
), pp.
275
298
.10.1029/97RG03319
43.
Andrade
,
J.
, Jr.
,
Costa
,
U.
,
Almeida
,
M.
,
Makse
,
H.
, and
Stanley
,
H.
,
1999
, “
Inertial Effects on Fluid Flow Through Disordered Porous Media
,”
Phys. Rev. Lett.
,
82
(
26
), pp.
5249
5252
.10.1103/PhysRevLett.82.5249
44.
Nissan
,
A.
, and
Berkowitz
,
B.
,
2018
, “
Inertial Effects on Flow and Transport in Heterogeneous Porous Media
,”
Phys. Rev. Lett.
,
120
(
5
), p.
054504
.10.1103/PhysRevLett.120.054504
You do not currently have access to this content.