Abstract

The development of a maneuverable underwater high-speed vehicle is worthy of attention and study using supercavitation drag reduction theory and technology. The supercavity shape determines the hydrodynamics of the vehicle, and especially during a maneuver, its unsteady characteristics have a significant impact on the motion stability of the vehicle. The three-dimensional dynamic model of a ventilated supercavitating vehicle is established using the unsteady supercavity dynamic model based on the rigid body dynamics theory as an extension of the vehicle's longitudinal dynamic model in our recent work. The vehicle's accelerating and decelerating motions are simulated in the straight flight state using a self-developed numerical method based on the vehicle's dynamic model with the designed control law. Motion characteristics are analyzed on the evolution laws of the vehicle's motion state variables and control variables and the supercavity's characteristic parameters (i.e., ventilation cavitation number, supercavity maximum diameter, and supercavity length) in the acceleration motions. The evolution laws in the accelerating and decelerating motions are compared, and the effects of the acceleration on the laws are further analyzed. This study lays the foundation for the in-depth study of the hydrodynamic characteristics and motion stability of ventilated supercavitating vehicles in maneuvering states.

References

1.
Logvinovich
,
G. V.
,
1969
,
Hydrodynamics of Flows With Free Boundaries
,
Naukova Dumka
,
Kiev, Ukraine
(in Russian).
2.
Kirschner
,
I. N.
,
Fine
,
N. E.
,
Uhlman
,
J. S.
,
Kring
,
D. C.
,
Rosenthal
,
B. J.
,
Gieseke
,
T. A.
,
Kuklinski
,
R.
,
Varghese
,
A. N.
,
Stinebring
,
D. R.
,
Dzielski
,
J. E.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2002
,
Supercavitation Research and Development
,
Undersea Defense Technologies
,
HI
.
3.
Ceccio
,
S. L.
,
2010
, “
Friction Drag Reduction of External Flows With Bubble and Gas Injection
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
183
203
.10.1146/annurev-fluid-121108-145504
4.
Epstein
,
L. A.
,
1973
, “
The Characteristics of Ventilated Cavities and Some Scale Effects
,”
Proceedings of the IUTAM Symposium
,
Leningrad, Russia
, June 22–26, pp.
173
185
(in Russian).
5.
Kawakami
,
E.
, and
Arndt
,
R. E. A.
,
2011
, “
Investigation of the Behavior of Ventilated Supercavities
,”
ASME J. Fluids Eng.
,
133
, p.
091305
.10.1115/1.4004911
6.
Karn
,
A.
, and
Chawdhary
,
S.
,
2018
, “
On the Synergistic Interrelation Between Supercavity Formation Through Vaporous and Ventilated Routes
,”
Int. J. Multiphase Flow
,
104
, pp.
1
8
.10.1016/j.ijmultiphaseflow.2018.03.015
7.
Zou
,
W.
, and
Liu
,
H.
,
2015
, “
Control of the Ventilated Supercavity on the Maneuvering Trajectory
,”
Ocean Eng.
,
101
, pp.
235
243
.10.1016/j.oceaneng.2015.04.036
8.
Silberman
,
E.
, and
Song
,
C. S.
,
1961
, “
Instability of Ventilated Cavities
,”
J. Ship. Res.
,
5
(
01
), pp.
13
33
.10.5957/jsr.1961.5.2.13
9.
Zou
,
W.
,
Yu
,
K. P.
,
Arndt
,
R. E. A.
, and
Kawakami
,
E.
,
2013
, “
On Minimum Cavitation Number of the Ventilated Supercavity in Water Tunnel
,”
Sci. China Ser. G
,
56
(
10
), pp.
1945
1951
.10.1007/s11433-012-4917-0
10.
Shao
,
S. Y.
,
Karn
,
A.
,
Ahn
,
B. K.
,
Arndt
,
R. E. A.
, and
Hong
,
J. R.
,
2017
, “
A Comparative Study of Natural and Ventilated Supercavitation Across Two Closed-Wall Water Tunnel Facilities
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
519
529
.10.1016/j.expthermflusci.2017.07.005
11.
Paryshev
,
E.
,
2003
, “
Mathematical Modeling of Unsteady Cavity Flows
,”
Proceedings of the 5th International Symposium on Cavitation
,
Osaka, Japan
, Nov. 1–4, Paper No. Cav 03-OS-7-014.
12.
Zhuravlev
,
Y. F.
, and
Varyukhin
,
A. N.
,
2015
, “
Cavity Geometry in Real Conditions
,”
J. Phys. Conf. Ser.
,
656
, p.
012173
.10.1088/1742-6596/656/1/012173
13.
Skidmore
,
G. M.
,
Brungart
,
T. A.
,
Lindau
,
J. W.
, and
Moeny
,
M. J.
,
2016
, “
The Control of Ventilated Supercavity Pulsation and Noise
,”
Int. J. Multiphase Flow
,
85
, pp.
14
22
.10.1016/j.ijmultiphaseflow.2016.05.006
14.
Paryshev
,
E. V.
,
2006
, “
Approximate Mathematical Models in High-Speed Hydrodynamics
,”
J. Eng. Math.
,
55
(
1–4
), pp.
41
64
.10.1007/s10665-005-9026-x
15.
Kirschner
,
I. N.
, and
Arzoumanian
,
S. H.
,
2008
, “
Implementation and Extension of Paryshev's Model of Cavity Dynamics
,”
International Conference on Innovative Approaches to Further Increase Speed of Fast Marine Vehicles, Moving Above, Under and in Water Surface, SuperFAST'2008
,
Saint-Petersburg, Russia
, July 2–4, pp.
1
32
.https://www.researchgate.net/publication/236609804_Implementation_and_Extension_of_Paryshev's_Model_of_Cavity_Dynamics
16.
Zou
,
W.
,
Yu
,
K. P.
,
Arndt
,
R. E. A.
,
Zhang
,
G.
, and
Li
,
Z. W.
,
2013
, “
On the Shedding of the Ventilated Supercavity With Velocity Disturbance
,”
Ocean Eng.
,
57
, pp.
223
229
.10.1016/j.oceaneng.2012.09.013
17.
Skidmore
,
G. M.
,
Brungart
,
T. A.
,
Lindau
,
J. W.
, and
Moeny
,
M. J.
,
2015
, “
A Method of Mitigating Pulsation in Ventilated Supercavities
,”
J. Phys. Conf. Ser.
,
656
, p.
012170
.10.1088/1742-6596/656/1/012170
18.
Shao
,
S. Y.
,
Wu
,
Y.
,
Haynes
,
J.
,
Arndt
,
R. E. A.
, and
Hong
,
J. R.
,
2018
, “
Investigation Into the Behaviors of Ventilated Supercavities in Unsteady Flow
,”
Phys. Fluids
,
30
(
5
), p.
052102
.10.1063/1.5027629
19.
Lee
,
S. J.
,
Kawakami
,
E.
, and
Arndt
,
R. E. A.
,
2013
, “
Investigation of the Behavior of Ventilated Supercavities in a Periodic Gust Flow
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081301
.10.1115/1.4024382
20.
Wu
,
X. J.
, and
Chahine
,
G. L.
,
2007
, “
Characterization of the Content of the Cavity Behind a High-Speed Supercavitating Body
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
136
145
.10.1115/1.2409356
21.
Serebryakov
,
V. V.
,
Arndt
,
R. E. A.
, and
Dzielski
,
J. E.
,
2015
, “
Supercavitation: Theory, Experiment and Scale Effects
,”
J. Phys. Conf. Ser.
,
656
, p.
012169
.10.1088/1742-6596/656/1/012169
22.
Zou
,
W.
,
Liu
,
H.
, and
Xue
,
L. P.
,
2016
, “
Three-Dimensional Ventilated Supercavity on a Maneuvering Trajectory
,”
Ocean Eng.
,
122
, pp.
97
104
.10.1016/j.oceaneng.2016.06.023
23.
Yu
,
K. P.
,
Zou
,
W.
, and
Wan
,
X. H.
,
2013
, “
Suction Gas Control on Ventilated Supercavitating Flows
,”
J. Ship Mech.
,
17
(
12
), pp.
1371
1380
.10.3969/j.issn.1007-7294.2013.12.002
24.
Kirschner
,
I. V.
,
Kring
,
D. C.
,
Stokes
,
A. W.
,
Fine
,
N. E.
, and
Uhlman
,
J. S.
,
2002
, “
Control Strategies for Supercavitating Vehicles
,”
J. Vib. Control
,
8
(
2
), pp.
219
242
.10.1177/107754602023818
25.
Serebryakov
,
V. V.
,
2009
, “
Physical-Mathematical Bases of the Principle of Independence of Cavity Expansion
,”
Proceedings of the Seventh International Symposium on Cavitation
,
Ann Arbor, MI
, Aug. 17–32, Paper No. 169.
26.
Mokhtarzadeh
,
H.
,
Balas
,
G.
, and
Arndt
,
R.
,
2012
, “
Effect of Cavitator on Supercavitating Vehicle Dynamics
,”
IEEE J. Oceanic Eng.
,
37
(
2
), pp.
156
165
.10.1109/JOE.2011.2177689
27.
Sanabria
,
D. E.
,
Balas
,
G.
, and
Arndt
,
R.
,
2015
, “
Modeling, Control and Experimental Validation of a High-Speed Supercavitating Vehicle
,”
IEEE J. Oceanic Eng.
,
40
(
2
), pp.
362
373
.10.1109/JOE.2014.2312591
28.
Nguyen
,
V.
, and
Balachandran
,
B.
,
2011
, “
Supercavitating Vehicles With Noncylindrical, Nonsymmetric Cavities: Dynamics and Instabilities
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041001
.10.1115/1.4003408
29.
Zou
,
W.
, and
Wang
,
B. L.
,
2020
, “
Longitudinal Maneuvering Motions of the Supercavitating Vehicle
,”
Eur. J. Mech. B. Fluids
,
81
, pp.
105
113
.10.1016/j.euromechflu.2019.12.008
30.
Kirschner
,
I. N.
, and
Uhlman
,
J. S.
,
2006
, “
Overview of High-Speed Supercavitating Vehicle Control
,”
AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, Paper No. 2006-6442.
31.
Vanek
,
B.
,
Balas
,
G. J.
, and
Arndt
,
R. E. A.
,
2010
, “
Linear, Parameter-Varying Control of a Supercavitating Vehicle
,”
Control Eng. Pract.
,
18
(
9
), pp.
1003
1012
.10.1016/j.conengprac.2010.04.006
32.
Sanabria
,
D. E.
,
Balas
,
G. J.
, and
Arndt
,
R. E. A.
,
2014
, “
Planing Avoidance Control for Supercavitating Vehicles
,”
American Control Conference
,
Portland, OR
, June 4–6, pp.
4979
4984
.
33.
Mirzaei
,
M.
,
Eghtesad
,
M.
, and
Alishahi
,
M. M.
,
2016
, “
Planing Force Identification in High-Speed Underwater Vehicles
,”
J. Vib. Control
,
22
(
20
), pp.
4176
4191
.10.1177/1077546315571660
34.
Yu
,
K. P.
,
Zhang
,
G.
,
Zhou
,
J. J.
,
Zou
,
W.
, and
Li
,
Z. W.
,
2012
, “
Numerical Study of the Pitching Motions of Supercavitating Vehicles
,”
J. Hydrodyn. Ser. B
,
24
(
6
), pp.
951
958
.10.1016/S1001-6058(11)60323-5
35.
Moroz
,
V.
,
Kochin
,
V.
,
Serebryakov
,
V.
, and
Dzielski
,
J.
,
2018
, “
Experimental Study of Planning Motion of a Cylinder Along the Nearly Axisymmetric Supercavity Surface
,”
Proceedings of the Tenth International Symposium on Cavitation
,
Baltimore, MD
, May 14–16, Paper No. CAV18-05089.
36.
Kunz
,
R. F.
,
Lindau
,
J. W.
,
Billet
,
M. L.
, and
Stinebring
,
D. R.
,
2001
, “
Multiphase CFD Modeling of Developed and Supercavitating Flows
,”
RTO AVT Lecture Series on Supercavitating Flows
,
Brussels, Belgium
, Feb. 12–16, pp.
269
312
.
37.
Dzielski
,
J.
, and
Kurdila
,
A.
,
2003
, “
A Benchmark Control Problem for Supercavitating Vehicles and an Initial Investigation of Solutions
,”
J. Vib. Control
,
9
(
7
), pp.
791
804
.10.1177/1077546303009007004
38.
Balas
,
G. J.
,
Bokor
,
J.
,
Vanek
,
B.
, and
Arndt
,
R. E. A.
,
2006
, “
Control of High-Speed Underwater Vehicle
,”
Control Uncertain. Syst.
, LNCIS
329
, pp.
25
44
.10.1007/11664550_2
39.
Wang
,
J. H.
,
Wei
,
Y. J.
,
Cao
,
W.
,
Huang
,
W. H.
, and
Lv
,
R.
,
2011
, “
Nonlinear Dynamic Modeling and Simulation of an Underwater Supercavitating Vehicle
,”
Eng. Mech.
,
28
(
12
), pp.
183
198
(in Chinese).
40.
Zou
,
W.
,
Liu
,
T. X.
, and
Wang
,
J. X.
,
2021
, “
Motion Simulations of a Supercavitating Body With Variable Ventilations
,”
Proceedings of the 11th International Symposium on Cavitation
,
Daejon, South Korea
, May 10–13, Paper No. P00007.
41.
Serebryakov
,
V. V.
,
2018
, “
Identification of the Cavitation Flow Parameters on the Basis of Photofixing of an Experimental Supercavity
,”
Proceedings of the Tenth International Symposium on Cavitation
,
Baltmore, MD
, May 14–16, Paper No. CAV18-05108.
42.
Zou
,
W.
,
Xue
,
L. P.
,
Wang
,
B. L.
, and
Xiang
,
X. T.
,
2018
, “
Gas Flows and Losses Inside High-Speed Ventilated Supercavitating Flows
,”
Ocean Eng.
,
164
, pp.
65
73
.10.1016/j.oceaneng.2018.06.030
43.
Serebryakov
,
V. V.
,
2002
, “
The Models of the Supercavitation Prediction for High Speed Motion in Water
,”
The International Summer Scientific School “High Speed Hydrodynamics”
,
Cheboksary, Russia
, June 16–23, pp.
71
92
.
44.
Karn
,
A.
,
Arndt
,
R. E. A.
, and
Hong
,
J. R.
,
2016
, “
An Experimental Investigation Into Supercavity Closure Mechanisms
,”
J. Fluid Mech.
,
789
, pp.
259
284
.10.1017/jfm.2015.680
45.
Buyvol
,
V. N.
, and
Serebryakov
,
V. V.
,
2012
, “
Development of a Nonlinear Asymptotic Method for Calculation of Nearly Axisymmetric Cavitation Flows
,”
Proceedings of the Eighth International Symposium on Cavitation
,
Singapore
, Aug. 13–16, Paper No. 237.
46.
Wu
,
Y.
,
Liu
,
Y.
,
Shao
,
S. Y.
, and
Hong
,
J. R.
,
2019
, “
On the Internal Flow of a Ventilated Supercavity
,”
J. Fluid Mech.
,
862
, pp.
1135
1165
.10.1017/jfm.2018.1006
47.
Kinzel
,
P. K.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2009
, “
Air Entrainment Mechanisms From Artificial Supercavities: Insight Based on Numerical Simulations
,”
Proceedings of the Seventh International Symposium on Cavitation
,
Ann Arbor, MI
, Aug. 17–22, No. 136.
48.
Spurk
,
J. H.
,
2002
, “
On the Gas Loss From Ventilated Supercavities
,”
Acta Mech.
,
155
(
3–4
), pp.
125
135
.10.1007/BF01176238
49.
Kim
,
S.
, and
Kim
,
N.
,
2016
, “
Control Strategy for a Ventilated Supercavitating Vehicle in Initial Phase
,”
Int. J. Offshore Polar Eng.
,
26
(
2
), pp.
132
138
.10.17736/ijope.2016.mk47
50.
Terentiev
,
A. G.
,
Kirschner
,
I. N.
, and
Uhlman
,
J. S.
,
2011
,
The Hydrodynamics of Cavitating Flows
,
Backbone Publishing Company
.
51.
Yu
,
K. P.
,
Zhou
,
J. J.
,
Min
,
J. X.
, and
Zhang
,
G.
,
2010
, “
A Contribution to Study on the Lift of Ventilated Supercavitating Vehicle With Low Froude Number
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
111303
.
52.
Lee
,
S. J.
,
Paik
,
B. G.
, and
Arndt
,
R. E. A.
,
2019
, “
Morphological Changes of Ventilated Supercavities in Continuous and Discrete Incident Gust Flows
,”
Ocean Eng.
,
172
, pp.
1
8
.10.1016/j.oceaneng.2018.11.032
53.
Zou
,
W.
, and
Zhang
,
X.
,
2021
, “
Shear Layer on a Ventilated Supercavity Wall
,”
Int. J. Multiphase Flow
,
135
, p.
103504
.10.1016/j.ijmultiphaseflow.2020.103504
54.
Zou
,
W.
, and
Liu
,
H.
,
2015
, “
Modeling and Simulations of the Supercavitating Vehicle With Its Tail-Slaps
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041302
.10.1115/1.4029330
55.
Sanabria
,
D. E.
,
2015
, “
Modeling, Robust Control, and Experimental Validation of a Supercavitating Vehicle
,” Ph.D. dissertation,
University of Minnesota
,
Twin City, MN
.
56.
Kinzel
,
M. P.
,
Krane
,
M. H.
,
Kirschner
,
I. N.
, and
Moeny
,
M. J.
,
2017
, “
A Numerical Assessment of the Interaction of a Supercavitating Flow With a Gas Jet
,”
Ocean Eng.
,
136
, pp.
304
313
.10.1016/j.oceaneng.2017.03.042
You do not currently have access to this content.