Stratified and annular gas–liquid flow patterns are commonly encountered in many industrial applications, such as oil and gas transportation pipelines, heat exchangers, and process equipment. The measurement and visualization of two-phase flow characteristics are of great importance as two-phase flows persist in many fluids engineering applications. A wire-mesh sensor (WMS) technique based on conductance measurements has been applied to investigate two-phase horizontal pipe flow. The horizontal flow test section consisting of a 76.2 mm ID pipe, 18 m long was employed to generate stratified and annular flow conditions. Two 16 × 16 wire configuration sensors, installed 17 m from the inlet of the test section, are used to determine the void fraction within the cross section of the pipe and determine interface velocities between the gas and liquid. These physical flow parameters were extracted using signal processing and cross-correlation techniques. In this work, the principle of WMS and the methodology of flow parameter extraction are described. From the obtained raw data time series of void fraction, cross-sectional mean void fraction, time averaged void fraction profiles, interfacial structures, and velocities of the periodic structures are determined for different liquid and gas superficial velocities that ranged from 0.03 m/s to 0.2 m/s and from 9 m/s to 34 m/s, respectively. The effects of liquid viscosity on the measured parameters have also been investigated using three different viscosities.

References

1.
Zhang
,
H-Q.
, and
Sarica
,
C.
,
2011
, “
Low Liquid Loading Gas/Liquid Pipe Flow
,”
J. Nat. Gas Sci. Eng.
,
3
(
2
), pp.
413
422
.10.1016/j.jngse.2011.03.001
2.
Shoham
,
O.
,
2006
,
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes
,
Society of Petroleum Engineers
,
Richardson, TX
.
3.
Mantilla
,
I.
,
2008
, “
Mechanistic Modeling of Liquid Entrainment in Gas in Horizontal Pipes
,” Ph.D. thesis, The University of Tulsa, Tulsa, OK.
4.
Mouza
,
A. A.
,
Paras
,
S. V.
, and
Karabelas
,
A. J.
,
2001
, “
CFD Code Application to Wavy Stratified Gas-Liquid Flow
,”
Chem. Eng. Res. Des.
,
79
(
5
), pp.
561
568
.10.1205/02638760152424334
5.
Tzotzi
,
C.
, and
Andritsos
,
N.
,
2013
, “
Interfacial Shear Stress in Wavy Stratified Gas-Liquid Flow in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
54
, pp.
43
54
.10.1016/j.ijmultiphaseflow.2013.03.003
6.
Andritsos
,
N.
, and
Hanratty
,
T. J.
,
1987
, “
Influence of Interfacial Waves in Stratified Gas–Liquid Flow
,”
AIChE J.
,
33
(
3
), pp.
444
454
.10.1002/aic.690330310
7.
Tzotzi
,
C.
,
Bontozoglou
,
V.
,
Vlachogiannnis
,
M.
, and
Andritsos
,
N.
,
2011
, “
Effect of Fluid Properties on Flow Patterns in Two-Phase Gas–Liquid Flow in Horizontal and Downward Pipes
,”
Ind. Eng. Chem. Res.
,
50
(2), pp.
645
655
.10.1021/ie100239v
8.
Chen
,
T.
,
Cai
,
X. D.
, and
Brill
,
J. P.
,
1997
, “
Gas–Liquid Stratified-Wavy Flow in Horizontal Pipelines
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
209
216
.10.1115/1.2794992
9.
Fernandino
,
M.
, and
Ytrehus
,
T.
,
2006
, “
Determination of Flow Sub-Regimes in Stratified Air–Water Channel Flow Using LDV Spectra
,”
Int. J. Multiphase Flow
,
32
(
4
), pp.
436
446
.10.1016/j.ijmultiphaseflow.2006.01.003
10.
Usama
,
K.
,
2009
, “
Long Liquid Slugs in Stratified Gas/Liquid Flow in Horizontal and Slightly Inclined Pipes
,” Ph.D. thesis, Delft University, Netherlands.
11.
Hubbard
,
M. B.
, and
Dukler
,
A. E.
,
1966
, The Characterization of Flow Regimes for Horizontal Two-Phase Flow,
Heat Trans. & Fluid Mech. Inst.
, M. A. Saad and J. A. Miller, eds., Stanford U. Press, pp. 101–121.
12.
Tutu
,
N. K.
,
1982
, “
Pressure Fluctuations and Flow Pattern Recognition in Vertical Two-Phase Gas-Liquid Flows
,”
Int. J. Multiphase Flow
,
8
(
4
), pp.
443
447
.10.1016/0301-9322(82)90053-2
13.
Matsui
,
G.
,
1984
, “
Identification of Flow Regimes in Vertical Gas-Liquid Two-Phase Flow Using Differential Pressure Fluctuations
,”
Int. J. Multiphase Flow
,
10
(
6
), pp.
711
719
.10.1016/0301-9322(84)90007-7
14.
Jones
,
O. C.
, and
Zuber
,
N.
,
1975
, “
The Interrelation Between Void Fraction Fluctuations and Flow Pattern in Two-Phase Flow
,”
Int. J. Multiphase Flow
,
2
(
3
), pp.
273
306
.10.1016/0301-9322(75)90015-4
15.
Costigan
,
G.
, and
Whalley
,
P.
,
1997
, “
Slug Flow Regime Identification From Dynamic Void Fraction Measurements in Vertical Air-Water Flows
,”
Int. J. Multiphase Flow
,
23
(
2
), pp.
263
282
.10.1016/S0301-9322(96)00050-X
16.
Abdulkadir
,
M.
,
Zhao
,
D.
,
Sharaf
,
S.
,
Abdulkareem
,
L.
,
Lowndes
,
I.
, and
Azzopardi
,
B.
,
2011
, “
Interrogating the Effect of 90 Degree Bends on Air-Silicone Oil Flows Using Advanced Instrumentation
,”
Chem. Eng. Sci.
,
66
(
11
), pp.
2453
2467
.10.1016/j.ces.2011.03.006
17.
Da Silva
,
M.
,
Hampel
,
U.
,
Arruda
,
L.
,
Amaral
,
C.
, and
Morales
,
R.
,
2011
, “
Experimental Investigation of Horizontal Gas-Liquid Slug Flow by Means of Wire-Mesh Sensor
,”
J. Braz. Soc. Mech. Sci. Eng.
,
33
, pp.
237
242
.
18.
Abdulkareem
,
L.
,
Hernandez-Perez
,
V.
,
Sharaf
,
S.
, and
Azzopardi
,
B.
,
2011
, “
Characteristics of Air-Oil Slug Flow in Inclined Pipe Using Tomographic Techniques
,”
ASME
Paper No. AJTEC2011-44546.10.1115/AJTEC2011-44546
19.
Amaral
,
C.
,
Scorsim
,
O.
,
Santos
,
E.
,
Silva
,
M.
,
Conte
,
M.
, and
Morales
,
R.
,
2011
, “
Characterization of Air-Water Two-Phase Flow Using a Wire-Mesh Sensor
,”
ASME
Paper No. IMECE2011-6277710.1115/IMECE2011-62777.
20.
Van der Meulen
,
G.
,
2012
, “
Churn-Annular Gas Liquid Flows in Large Diameter Vertical Pipes
,” Ph.D. thesis, University of Nottingham, Nottingham, UK.
21.
Kesana
,
N.
,
Vieira
,
R.
,
McLaury
,
B.
,
Shirazi
,
S.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2013
, “
Experimental Study of Slug Characteristics—Implications to Sand Erosion
,”
ASME
Paper No. FEDSM2013-16165.10.1115/FEDSM2013-16165
22.
Hanratty
,
T. J.
, and
Hershman
,
A.
,
1961
, “
Initiation of Roll Waves
,”
AIChE J.
,
7
(
3
), pp.
488
497
.10.1002/aic.690070330
23.
Lin
,
P. Y.
, and
Hanratty
,
T. J.
,
1986
, “
Prediction of the Initiation of Slugs With Linear Stability Theory
,”
Int. J. Multiphase Flow
,
12
(
1
), pp.
79
98
.10.1016/0301-9322(86)90005-4
24.
Andritsos
,
N.
,
1989
, “
Effect of Liquid Viscosity on the Stratified-Slug Transition in Horizontal Pipe Flow
,”
Int. J. Multiphase Flow
,
15
(
6
), pp.
877
892
.10.1016/0301-9322(89)90017-7
25.
Matsubara
,
H.
, and
Naito
,
K.
,
2011
, “
Effect of Liquid Viscosity on Flow Patterns of Gas–Liquid Two-Phase Flow in a Horizontal Pipe
,”
Int. J. Multiphase Flow
,
37
(
10
), pp.
1277
1281
.10.1016/j.ijmultiphaseflow.2011.08.001
26.
Prasser
,
H.
,
Böttger
,
A.
, and
Zschau
,
J.
,
1998
, “
A New Electrode-Mesh Tomograph for Gas/Liquid Flows
,”
Flow Meas. Instrum.
,
9
(
2
), pp.
111
119
.10.1016/S0955-5986(98)00015-6
27.
Prasser
,
H.-M.
,
Krepper
,
E.
, and
Lucas
,
D.
,
2002
, “
Evolution of the Two-Phase Flow in a Vertical Tube—Decomposition of Gas Fraction Profiles According to Bubble Size Classes Using Wire-Mesh Sensors
,”
Int. J. Therm. Sci.
,
41
(
1
), pp.
17
28
.10.1016/S1290-0729(01)01300-X
28.
Vieira
,
R.
,
Kesana
,
N.
,
McLaury
,
B.
, and
Shirazi
,
S.
,
2012
, “
Sand Erosion in Multiphase Flow for Low-Liquid Loading and Annular Conditions
,”
International Mechanical Engineering Congress
, Nov. 8–12,
Houston, TX
.
29.
Vieira
,
R.
,
Kesana
,
N.
,
McLaury
,
B.
,
Shirazi
,
S.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2013
, “
Experimental Investigation of Horizontal Gas-Liquid Stratified and Annular Flow Using Wire Mesh Sensor
,”
ASME
Paper No. FEDSM2013-16117.10.1115/FEDSM2013-16117
30.
Pereyra
,
E.
, and
Torres
,
C.
,
2005
, “
FLOPATN—Flow Pattern Prediction and Plotting Computer Code
,” The University of Tulsa, Tulsa, OK.
31.
Barnea
,
D.
,
1987
, “
A Unified Model for Predicting Flow Pattern Transitions for the Whole Range of Pipe Inclinations
,”
Int. J. Multiphase Flow
,
13
(
1
), pp.
1
12
.10.1016/0301-9322(87)90002-4
32.
Stern
,
F.
,
Muste
,
M.
,
Beninati
,
M.
, and
Eichinger
,
W.
,
1999
, “
Summary of Experimental Uncertainty Assessment Methodology
,” College of Engineering, Iowa Institute of Hydraulic Research The University of Iowa, Iowa City, IA, Technical Report No. 406.
33.
Bowman
,
A. W.
, and
Azzalini
,
A.
,
1997
,
Applied Smoothing Techniques for Data Analysis
,
Oxford University Press Inc.
,
New York
.
34.
Orfanidis
,
S.
,
2007
,
Optimum Signal Processing: An Introduction
,
McGraw-Hill
,
New York
.
35.
Bendat
,
J.
, and
Piersol
,
A.
,
2010
,
Random Data: Analysis and Measurement Procedures
,
Wiley
,
NJ
.
You do not currently have access to this content.