In this paper, the partially cavitating flow over an axisymmetric projectile is studied in order to obtain the optimum cavitator such that, at a given cavitation number, the total drag coefficient of the projectile is minimum. For this purpose, the boundary element method and numerical simulations are used. A large number of cavitator profiles are produced using a parabolic expression with three geometric parameters. The potential flow around these cavitators is then solved using the boundary element method. In order to examine the optimization results, several cavitators with a total drag coefficient close to that of the optimum cavitators are also numerically simulated. Eventually, the optimum cavitator is selected using both the boundary element method and numerical simulations. The effects of the body radius and the length of the conical section of the projectile on the shape of the optimized cavitator are also investigated. The results show that for all cavitation numbers, the cavitator that creates a cavity covering the entire conical section of the projectile with a minimum total drag coefficient is optimal. It can be seen that increasing the cavitation number causes the optimum cavitator to approach the disk cavitator. The results also show that at a fixed cavitation number, the increase in both the radius and length of the conical section causes the cavitator shape to approach that of the disk cavitator.

References

1.
Savchenko
,
Y. N.
,
Vlasenko
,
Y. D.
, and
Semenenko
,
V. N.
,
1999
, “
Experimental Study of High-Speed Cavitated Flows
,”
Int. J. Fluid Mech. Res.
,
26
(
3
), pp.
365
374
.
2.
Vlasenko
,
Y. D.
,
2003
, “
Experimental Investigation of Supercavitation Flow Regimes at Subsonic and Transonic Speeds
,”
Proceedings of the 5th International Symposium on Cavitation
,
Osaka, Japan
, Paper No. Cav03-GS-6-006, pp.
1
8
.
3.
Hrubes
,
J. D.
,
2001
, “
High-Speed Imaging of Supercavitation Underwater Projectiles
,”
Exp. Fluids
,
30
(
1
), pp.
57
64
.10.1007/s003480000135
4.
Martin
,
W.
,
Travis
,
J. S.
, and
Roger
,
E. A.
,
2003
, “
Experimental Study of a Ventilated Supercavitating Vehicle
,”
Proceedings of the 5th International Symposium on Cavitation
,
Osaka, Japan
, Paper No. Cav03-OS-7-008, pp.
1
7
.
5.
Kuklinski
,
R.
,
Henoch
,
C.
, and
Castano
,
J.
,
2001
, “
Experimental Study of Ventilated Cavities on Dynamic Test Model
,”
Proceedings of the 4th International Symposium on Cavitation
,
Pasadena, CA
, Paper No. Cav01-B3-004, pp.
1
8
.
6.
Savchenko
,
Y. N.
, and
Semenenko
,
V. N.
,
1998
, “
The Gas Absorption Into Supercavity From Liquid-Gas Bubble Mixture
,”
Proceedings of the 3rd International Symposium on Cavitation
,
Grenoble, France
, pp.
49
53
.
7.
Michel
,
J. M.
,
2001
, “
Oscillations of Ventilated Cavities: Experimental Aspects
,”
VKI Special Course on Supercavitating Flows
,
Brussels, Belgium
, pp.
29
41
.
8.
Feng
,
X.-M.
,
Lu
,
C.-J.
, and
Hu
,
T.-Q.
,
2002
, “
Experimental Research on a Supercavitating Slender Body of Revolution With Ventilation
,”
J. Hydrodyn.
,
14
(
2
), pp.
17
23
.
9.
Feng
,
X.-M.
,
Lu
,
C.-J.
, and
Hu
,
T.-Q.
,
2005
, “
The Fluctuation Characteristics of Natural and Ventilated Cavities on an Axisymmetric Body
,”
J. Hydrodyn.
,
17
(
1
), pp.
87
91
.
10.
Zhang
,
X.-W.
,
Wei
,
Y.-J.
, and
Zhang
,
J.-Z.
,
2007
, “
Experimental Research on the Shape Characters of Natural and Ventilated Supercavitation
,”
J. Hydrodyn.
,
19
(
5
), pp.
564
571
.10.1016/S1001-6058(07)60154-1
11.
Lee
,
Q.-T.
,
Xue
,
L.-P.
, and
He
,
Y.-S.
,
2008
, “
Experimental Study of Ventilated Supercavities With a Dynamic Pitching Model
,”
J. Hydrodyn.
,
20
(
4
), pp.
456
460
.10.1016/S1001-6058(08)60080-3
12.
Wang
,
G.
,
Senocak
,
I.
,
Shyy
,
W.
,
Ikohagi
,
T.
, and
Cao
,
S.
,
2001
, “
Dynamics of Attached Turbulent Cavitating Flows
,”
Prog. Aerosp. Sci.
,
37
, pp.
551
581
.10.1016/S0376-0421(01)00014-8
13.
Passandideh-Fard
,
M.
,
and
Roohi
,
E.
,
2008
, “
Transient Simulations of Cavitating Flows Using a Modified Volume-of-Fluid (VOF) Technique
,”
Int. J. Comput. Fluid Dyn.
,
22
(
1-2
), pp.
97
114
.10.1080/10618560701733657
14.
Yuan
,
W.
,
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2001
, “
Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles
,”
J. Mech. Ind.
,
2
, pp.
383
394
.10.1016/S1296-2139(01)01120-4
15.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(3), pp.
617
624
.10.1115/1.1486223
16.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
,
1998
, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Proceedings of the 3rd International Symposium on Cavitation (CAV1998)
,
Grenoble, France
, pp.
307
311
.
17.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S
.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
, pp.
849
875
.10.1016/S0045-7930(99)00039-0
18.
Frobenius
,
M.
,
Schilling
,
R.
,
Bachert
,
R.
, and Stoffel, B.,
2003
, “
Three-Dimensional Unsteady Cavitating Effects on a Single Hydrofoil and in a Radial Pump–Measurement and Numerical Simulation
,”
Proceedings of the 5th International Symposium on Cavitation (CAV2003)
,
Osaka, Japan
, Paper No. GS-9-004.
19.
aus der Wiesche
,
S.
,
2005
, “
Numerical Simulation of Cavitation Effects Behind Obstacles and in an Automotive Fuel Jet Pump
,”
Heat Mass Transfer
,
41
(
7
), pp.
615
624
.10.1007/s00231-004-0580-y
20.
Efros
,
D. A.
,
1946
, “
Hydrodynamic Theory of Two-Dimensional Flow With Cavitation
,”
Dokl. Akad. Nauk SSSR
,
51
, pp.
267
270
.
21.
Tulin
,
M. P.
,
1964
, “
Supercavitating Flows—Small Perturbation Theory
,”
J. Ship Res.
,
7
(
3
), pp.
16
37
.
22.
Cuthbert
,
J.
, and
Street
,
R.
,
1964
, “
An Approximate Theory for Supercavitating Flow About Slender Bodies of Revolution
,” Lockheed Missiles and Space Co., Sunnyvale, CA, LMSC Report No. TM81-73/39.
23.
Chou
,
Y. S.
,
1974
, “
Axisymmetric Cavity Flows Past Slender Bodies of Revolution
,”
J. Hydronaut.
,
8
(
1
), pp.
13
18
.10.2514/3.62971
24.
Vorus
,
W. S.
,
1991
, “
A Theoretical Study of the Use of Supercavitation/Ventilation for Underwater Body Drag Reduction
,”
VAI Technical Report
,
Vorus & Associates, Inc.
,
Gregory, MI
.
25.
Kuria
,
I. M.
,
Kirschner
,
I. N.
,
Varghese
,
A. N.
, and
Uhlman
,
J. S.
,
1997
, “
Compressible Cavity Flows Past Slender Non-Lifting Bodies of Revolution
,”
Proceedings of the ASME and JSME Fluids Engineering Annual Conference and Exhibition, Cavitation and Multiphase Flow Forum
,
Vancouver, BC
, Paper No. FEDSM97-3262.
26.
Uhlman
,
J. S.
,
1987
, “
The Surface Singularity Method Applied to Partially Cavitating Hydrofoils
,”
J. Ship Res.
,
31
(
2
), pp.
107
124
.
27.
Uhlman
,
J. S.
,
1989
, “
The Surface Singularity or Boundary Integral Method Applied to Supercavitating Hydrofoils
,”
J. Ship Res.
,
33
(
1
), pp.
16
20
.
28.
Hase
,
P. M.
,
2003
, “
Interior Source Methods for Planar and Axisymmetric Supercavitating Flows
,”
Ph.D. thesis
,
University of Adelaide
,
Adelaide, Australia
.
29.
Varghese
,
A. N.
,
Uhlman
,
J. S.
, and
Kirschner
,
I. N.
,
2005
, “
Numerical Analysis of High-Speed Bodies in Partially Cavitating Axisymmetric Flow
,”
ASME J. Fluids Eng.
,
127
(1), pp.
41
54
.10.1115/1.1852473
30.
Rashidi
,
I.
,
Moin
,
H.
,
Fard
,
Mo. P.
, and
Fard
,
Ma. P.
,
2008
, “
Numerical Simulation of Partial Cavitation Over Axisymmetric Bodies VOF Method vs. Potential Flow Theory
,”
J. Aerosp.Sci. Technol.
,
5
(
1
), pp.
23
33
.
31.
Kinnas
,
S. A.
,
Mishima
,
S. H.
, and
Savineau
,
C.
,
1995
, “
Application of Optimization Techniques to the Design of Cavitating Hydrofoils and Wings
,”
Proceedings of the International Symposium on Cavitation
,
Deauville, France
.
32.
Mishima
,
S. H.
and
Kinnas
,
S. A.
,
1995
, “
A Numerical Optimization Technique Applied to the Design of Two-Dimensional Cavitating Hydrofoil Sections
,”
J. Ship Res.
,
40
, pp.
28
38
.
33.
Alyanak
,
E.
,
Venkayya
,
V.
,
Grandhi
,
R. V.
, and
Penmetsa
,
R. C.
, “
Variable Shape Cavitator Design for a Supercavitating Torpedo
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Dayton, OH
.
34.
Choi
,
J. H.
,
Penmetsa
,
R. C.
, and
Grandhi
,
R. V.
,
2005
, “
Shape Optimization of the Cavitator for a Supercavitating Torpedo
,”
Struct. Multidiscip. Optim.
,
29
, pp.
159
167
.10.1007/s00158-004-0466-0
35.
Shafaghat
,
R.
,
Hosseinalipour
,
S. M.
,
Nouri
,
N. M.
, and
Lashgari
,
I.
,
2008
, “
Shape Optimization of Two-Dimensional Cavitators in Supercavitating Flows, Using the NSGA II Algorithm
,”
Appl. Ocean Res.
,
30
, pp.
305
310
.10.1016/j.apor.2009.02.005
36.
Shafaghat
,
R.
,
Hosseinalipour
,
S. M.
, and
Lashgari
,
I.
, and Vahedgermi, A.,
2011
, “
Shape Optimization of Axisymmetric Cavitators in Supercavitating Flows, Using the NSGA II Algorithm
,”
Appl. Ocean Res.
,
33
, pp.
193
198
.10.1016/j.apor.2011.03.001
37.
Kinnas
,
S. A.
, and
Fine
,
N. E.
,
1993
, “
A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils
,”
J. Fluid Mech.
,
254
, pp.
151
158
.10.1017/S0022112093002071
38.
Shames
,
I. H.
,
2003
,
Mechanics of Fluids
, 4th ed.,
McGraw-Hill
,
New York
.
39.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid
,
Hemisphere
,
Washington, DC
.
40.
Leonard
,
B. P.
, and
Mokhtari
,
S.
,
1990
, “
ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow
,”
NASA Lewis Research Center, Report No. NASA-TM-102568 (ICOMP-90-12)
.
41.
Franc
,
J.
, and
Michel
,
J.
,
2005
,
Fundamentals of Cavitation
,
Springer
,
Dordrecht
, The Netherlands.
You do not currently have access to this content.