A novel passive enlarged micromixer has been proposed and experimentally and numerically investigated in this study over 0.5 ≤ Re ≤ 100. Flow visualization was applied to qualitatively assess flow patterns and mixing, while induced fluorescence was applied to quantify the distribution of species at six locations along the channel length. Numerical simulations were applied to assist in the description of the highly rotational flow patterns. Two individual species are supplied through a total of three lamellae, which are converged prior to entering the main mixing channel, which consists of five groove-enhanced circular division elements. Grooves along the bottom surface of the channel allow for the development of helical flow in each subchannel of the mixing element, while the circular geometry of the mixing elements promotes the formation of Dean vortices at higher Reynolds numbers. The main mixing channel is 2000 μm wide and 750 μm deep, while the total channel length is 137.5 mm. Flow rotation was observed at all investigated Reynolds numbers, though the degree of rotation increased with increasing Re. A decreasing-increasing trend in the degree of mixing was observed, with a critical value at Re = 10. Of the investigated cases, the highest degree of mixing at the outlet was achieved at Re = 0.5, where mass diffusion dominates. A standard deviation of σexp = 0.062 was reported. At Re = 100, where advection dominates and secondary flow develops, a standard deviation of σexp = 0.103 was reported, and the formation of additional lamellae was observed along the channel length due to the merging of rotated substreams. The additional lamellae contributed to the increase in interfacial area and reduction of the path of diffusion.

References

1.
Jeong
,
G. S.
,
Chung
,
S.
,
Kim
,
C.-B.
, and
Lee
,
S.-H.
,
2010
, “
Applications of Micromixing Technology
,”
Analyst
,
135
, pp.
460
473
.10.1039/b921430e
2.
Nguyen
,
N. T.
, and
Wu
,
Z.
,
2005
, “
Micromixers—A Review
,”
J. Micromech. Microeng.
,
15
, pp.
R1
R16
.10.1088/0960-1317/15/2/R01
3.
Luong
,
T.-D.
,
Phan
,
V.-N.
, and
Nguyen
,
N.-T.
,
2011
, “
High-Throughput Micromixers Based on Acoustic Streaming Induced by Surface Acoustic Wave
,”
Microfluid. Nanofluid.
,
10
, pp.
619
625
.10.1007/s10404-010-0694-0
4.
Ahmed
,
D.
,
Mao
,
X.
,
Shi
,
J.
,
Juluri
,
B. K.
, and
Huang
,
T. J.
,
2009
, “
A Fast Microfluidic Mixer Based on Acoustically Driven Sidewall-Trapped Microbubbles
,”
Microfluid. Nanaofluid.
,
7
, pp.
727
731
.10.1007/s10404-009-0444-3
5.
Vilfan
,
M.
,
Potočnik
,
A.
,
Kavčič
,
B.
,
Osterman
,
N.
,
Poberaj
,
I.
,
Vilfan
,
A.
, and
Babič
,
D.
,
2010
, “
Self-Assembled Artificial Cilia
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
5
), pp.
1844
1847
.10.1073/pnas.0906819106
6.
Affanni
,
A.
, and
Chiorboli
,
G.
,
2010
, “
Development of an Enhanced MHD Micromixer Based on Axial Flow Modulation
,”
Sens. Actuators B
,
147
, pp.
748
754
.10.1016/j.snb.2010.03.077
7.
Yeo
,
L. Y.
, and
Friend
,
J. R.
,
2009
, “
Ultrafast Microfluidics Using Surface Acoustic Waves
,”
Biomicrofluidics
,
3
, p.
012002
.10.1063/1.3056040
8.
Bhagat
,
A. A. S.
,
Peterson
,
E. T. K.
, and
Papautsky
,
I.
,
2007
, “
A Passive Planar Micromixer With Obstructions for Mixing at Low Reynolds Numbers
,”
J. Micromech. Microeng.
,
17
, pp.
1017
1024
.10.1088/0960-1317/17/5/023
9.
Chen
,
L.
,
Wang
,
G.
,
Lim
,
C.
,
Seong
,
G. H.
,
Choo
,
J.
,
Lee
,
E. K.
,
Kang
,
S. H.
, and
Song
,
J. M.
,
2009
, “
Evaluation of Passive Mixing Behaviours in Pillar Obstruction Poly(dimethylsiloxane) Microfluidic Mixer Using Fluorescence Microscopy
,”
Microfluid. Nanofluid.
,
7
, pp.
267
273
.10.1007/s10404-008-0386-1
10.
Stroock
,
A. D.
,
Dertinger
,
S. K. W.
,
Ajdari
,
A.
,
Mezić
,
I.
,
Stone
,
H. A
, and
Whitesides
,
G. M.
,
2002
, “
Chaotic Mixer for Microchannels
,”
Science
,
295
, pp.
647
651
.10.1126/science.1066238
11.
Johnson
,
T. J.
,
Ross
,
D.
, and
Locascio
,
L. E.
,
2002
, “
Rapid Microfluidic Mixing
,”
Anal. Chem.
,
74
, pp.
45
51
.10.1021/ac010895d
12.
Schönfeld
,
F.
, and
Hardt
,
S.
,
2004
, “
Simulation of Helical Flows in Microchannels
,”
AIChE J.
,
50
(
4
), pp.
771
778
.10.1002/aic.10071
13.
Lee
,
J.
, and
Kwon
,
S.
,
2009
, “
Mixing Efficiency of a Multilamination Micromixer With Consecutive Recirculation Zones
,”
Chem. Eng. Sci.
,
64
, pp.
1223
1231
.10.1016/j.ces.2008.11.011
14.
Chung
,
C. K.
, and
Shih
,
T. R.
,
2007
, “
A Rhombic Micromixer With Asymmetrical Flow for Enhancing Mixing
,”
J. Micromech. Microeng.
,
17
, pp.
2495
2504
.10.1088/0960-1317/17/12/016
15.
Hessel
,
V.
,
Hardt
,
S.
,
Löwe
,
H.
, and
Schönfeld
,
F.
,
2003
, “
Laminar Mixing in Different Interdigital Micromixers: I Experimental Characterization
,”
AIChE J.
,
49
(
3
), pp.
566
577
.10.1002/aic.690490304
16.
Howell
,
P. B.
, Jr.
,
Mott
,
D. R.
,
Golden
,
J. P.
, and
Ligler
,
F. S.
,
2004
, “
Design and Evaluation of a Dean Vortex Based Micromixer
,”
Lab Chip
,
4
, pp.
663
669
.10.1039/b407170k
17.
Chen
,
J. J.
,
Chen
,
C. H.
, and
Shie
,
S. R.
,
2011
, “
Optimal Designs of Staggered Dean Vortex Micromixers
,”
Int. J. Mol. Sci.
,
12
, pp.
3500
3524
.10.3390/ijms12063500
18.
Schönfeld
,
F.
,
Hessel
,
V.
, and
Hofmann
,
C.
,
2004
, “
An Optimized Split-and-Recombine Micro-Mixer With Uniform ‘Chaotic’ Mixing
,”
Lab Chip
,
4
, pp.
65
69
.10.1039/b310802c
19.
Ansari
,
M. A.
,
Kim
,
K. Y.
,
Anwar
,
K.
, and
Kim
,
S. M.
,
2010
, “
A Novel Passive Micromixer Based on Unbalanced Splits and Collisions of Fluid Streams
,”
J. Micromech. Microeng.
,
20
, p.
055007
.10.1088/0960-1317/20/5/055007
20.
Lu
,
Z.
,
McMahon
,
J.
,
Mohamed
,
H.
,
Barnard
,
D.
,
Shaikh
,
T. R.
,
Manella
,
C. A.
,
Wagenknecht
,
T.
, and
Lu
,
T. M.
,
2010
, “
Passive Microfluidic Device for Submillisecond Mixing
,”
Sens. Actuators B
,
144
, pp.
301
309
.10.1016/j.snb.2009.10.036
21.
Mouza
,
A. A.
,
Patsa
,
C. M.
, and
Schönfeld
,
F.
,
2008
, “
Mixing Performance of a Chaotic Micro-Mixer
,”
Chem. Eng. Res. Des.
,
86
, pp.
1128
1134
.10.1016/j.cherd.2008.04.009
22.
Jiang
,
F.
,
Drese
,
K. S.
,
Hardt
,
S.
,
Kupper
,
M.
, and
Schönfeld
,
F.
,
2004
, “
Helical Flows and Chaotic Mixing in Curved Micro Channels
,”
AIChE J
.,
50
(
9
), pp.
2297
2305
.10.1002/aic.10188
23.
Howell
,
P. B.
, Jr.
,
Mott
,
D. R.
,
Fertig
,
S.
,
Kaplan
,
C. R.
,
Golden
,
J. P.
,
Oran
,
E. S.
, and
Ligler
,
F. S.
,
2005
, “
A Microfluidic Mixer With Grooves Placed on the Top and Bottom of the Channel
,”
Lab Chip
,
5
, pp.
524
530
.10.1039/b418243j
24.
Tofteberg
,
T.
,
Skolimowski
,
M.
,
Andreassen
,
E
, and
Deschke
,
O.
,
2010
, “
A Novel Passive Micromixer: Lamination in a Planar Channel System
,”
Microfluid Nanofluid.
,
8
, pp.
209
215
.10.1007/s10404-009-0456-z
25.
Aubin
,
J.
,
Ferrando
,
M.
, and
Jiricny
,
V.
,
2010
, “
Current Methods for Characterising Mixing and Flow in Microchannels
,”
Chem. Eng. Sci.
,
65
, pp.
2065
2093
.10.1016/j.ces.2009.12.001
26.
Hardt
,
S.
, and
Schönfeld
,
F.
,
2003
, “
Laminar Mixing in Different Interdigital Micromixers: II. Numerical Simulations
,”
AIChE J.
,
49
(
3
), pp.
578
584
.10.1002/aic.690490305
27.
Chen
,
J. J.
,
Lai
,
Y. R.
,
Tsai
,
R. T.
,
Lin
,
J. D.
, and
Wu
,
C. Y.
,
2011
, “
Crosswise Ridge Micromixers With Split and Recombination Helical Flows
,”
Chem. Eng. Sci.
,
66
(
10
), pp.
2164
2176
.10.1016/j.ces.2011.02.022
You do not currently have access to this content.