Losses in a flow field due to single conduit components often are characterized by experimentally determined head loss coefficients K. These coefficients are defined and determined with the pressure as the critical quantity. A thermodynamic definition, given here as an alternative, is closer to the physics of flow losses, however. This definition is based upon the dissipation of mechanical energy as main quantity. With the second law of thermodynamics this dissipation can be linked to the local entropy generation in the flow field. For various conduit components K values are determined and physically interpreted by determining the entropy generation in the component as well as upstream and downstream of it. It turns out that most of the losses occur downstream of the components what carefully has to be taken into account when several components are combined in a flow network.

References

1.
Munson
,
B.
,
Young
,
D.
, and
Okiishi
,
T.
, 2005,
Fundamentals of Fluid Mechanics
, 5th ed.,
Wiley
,
New York
.
2.
Idelchik
,
I.
, 2007,
Handbook of Hydraulic Resistance
,
Begell House, Inc.
,
Redding, CT
.
3.
Ward-Smith
,
A. J.
, 1980,
Internal Fluid Flow
,
Clarendon Press
,
Oxford
.
4.
VDI
, 2006,
VDI-Wärmeatlas
, 10 ed.,
Springer-Verlag
,
Berlin
.
5.
Moody
,
L.
,1944, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
, p.
671
.
6.
Nikuradse
,
J.
, 1933, “
Strömungsgesetze in rauhen Rohren
,”
Forsch. Geb. Ingenieurwes.
,
361
, pp.
1
22
.
7.
Schiller
,
L.
, 1923, “
Über den Strömungswiderstand von Rohren verschiedenen Querschnitts- und Rauhigkeitsgrades
,”
Z. Angew. Math. Mech.
,
3
, pp.
2
13
.
8.
Langelandsvik
,
L. I.
and
Kunkel
,
G. S. A.
, 2008, “
Flow in a Commercial Steel Pipe
,”
J. Fluid Mech.
,
595
, pp.
323
339
.
9.
Herwig
,
H.
, and
Kautz
,
C.
, 2007,
Technische Thermodynamik
,
Pearson Studium
,
München
.
10.
Herwig
,
H.
, 2010, “
The Role of Entropy Generation in Momentum and Heat Transfer
,”
Proceedings of the International Heat Transfer Conference
,
Washington D.C.
,
IHTC14
23348
.
11.
Herwig
,
H.
and
Wenterodt
,
T.
, 2009, “
Wall Roughness Effects: A Second Law Analysis (SLA)
,”
Proceedings of the IUTAM Symposium on the Physics of Wall-Bounded Flows on Rough Walls
,
Cambridge
, UK.
12.
Herwig
,
H.
,
Gloss
,
D.
, and
Wenterodt
,
T.
, 2008, “
A New Approach to Understand and Model the Influence of Wall Roughness on Friction Factors for Pipe and Channel Flows
,”
J. Fluid Mech.
613
, pp.
35
53
.
13.
Kittredge
,
C. P.
, and
Rowley
,
D.
, 1957, “
Resistance Coefficients for Laminar and Turbulent Flow Through One-Half-Inch Valves and Fittings
,”
Trans. ASME
, pp.
1759
1766
.
14.
Kock
,
F.
, and
Herwig
,
H.
, 2004, “
Local Entropy Production in Turbulent Shear Flows: A High Reynolds Number Model with Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2205
2215
.
15.
Gloss
,
D.
, and
Herwig
,
H.
, 2010, “
Wall Roughness Effects in Laminar Flows: An Often Ignored Though Significant Issue
,”
Exp. Fluids
,
49
, pp.
658
665
.
16.
Ito
,
H.
, 1960, “
Pressure Losses in Smooth Pipe Bends
,”
ASME J. Basic Eng. Series D
,
82
, pp.
131
143
.
17.
Hofmann
,
A.
, 1929, “
Der Verlust in 90 deg-Rohrkrümmern mit gleichbleibendem Kreisquerschnitt
,”
Mitt. des Hydraul. Instituts der TH München
,
3
, pp.
45
67
.
18.
Miller
,
D. S.
, 1978,
Internal Flow Systems,
2nd ed.,
BHRA, Cranfield
,
Bedford, UK
, reprinted 1990.
19.
Rauss
,
I.
, 1959, “
Contribution a l’etude de la perte de charge des coudes
,”
Chaleur et Industrie
,
40
.
20.
Miller
,
D. S.
, 1971,
Internal Flow: A Guide to Losses in Pipe and Duct Systems
,
BHRA, Cranfield
,
Bedford, UK
.
You do not currently have access to this content.