The thermodynamic effect on a cavitating inducer is investigated from joint experiments in cold water and Refrigerant 114. The analysis is focused on leading edge cavitation and cavitation instabilities, especially on alternate blade cavitation and supersynchronous rotating cavitation. The cavity length along cylindrical cuts at different radii between the hub and casing is analyzed with respect to the local cavitation number and angle of attack. The similarity in shape of the cavity closure line between water and R114 is examined and deviation caused by thermodynamic effect is clarified. The influence of rotation speed on cavity length is investigated in both fluids and analyzed on the basis of a comparison of characteristic times, namely, the transit time and a thermal time. Thermodynamic delay in the development of leading edge cavities is determined and temperature depressions within the cavities are estimated. Thresholds for the onset of cavitation instabilities are determined for both fluids. The occurrence of cavitation instabilities is discussed with respect to the extent of leading edge cavitation. The thermodynamic delay affecting the occurrence of cavitation instabilities is estimated and compared with the delay on cavity development.

1.
Holl
,
J. W.
,
Billet
,
M. L.
, and
Weir
,
D. S.
, 1975, “
Thermodynamic Effects on Developed Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
97
, pp.
507
514
.
2.
Billet
,
M. L.
,
Holl
,
J. W.
, and
Weir
,
D. S.
, 1981, “
Correlations of Thermodynamic Effects for Developed Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
103
, pp.
534
542
.
3.
Yoshida
,
Y.
,
Kikuta
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
,
Nakamura
,
N.
, and
Tokumasu
,
T.
, 2005, “
Thermodynamic Effect on a Cavitating Inducer in Liquid Nitrogen
,”
Proceedings of the ASME FEDSM ‘05, 2005 ASME Fluids Engineering Division Summer Meeting
, Houston, TX, Jun. 19–23.
4.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Okita
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
,
Nakamura
,
N.
, and
Ikohagi
,
T.
, 2006, “
Influence of Thermodynamic Effect on Synchronous Rotating Cavitation
Proceedings of the Sixth International Symposium on Cavitation, CAV2006
, Wageningen, The Netherlands.
5.
Yoshida
,
S.
,
Kikuta
,
K.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Nagaura
,
K.
, and
Ohira
,
K.
, 2006, “
Thermodynamic Effect on Cavitation Performances and Cavitation Instabilities in an Inducer
Proceedings of the Sixth International Symposium on Cavitation, CAV2006
, Wageningen, The Netherlands.
6.
Yoshida
,
Y.
,
Kikuta
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
, and
Tokumasu
,
T.
, 2007, “
Thermodynamic Effect on a Cavitating Inducer in Liquid Nitrogen
,”
ASME Trans. J. Fluids Eng.
0098-2202,
129
, pp.
273
278
.
7.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Okita
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
, and
Ikohagi
,
T.
, 2007, “
Influence of Thermodynamic Effect on Synchronous Rotating Cavitation
,”
ASME Trans. J. Fluids Eng.
0098-2202,
129
, pp.
871
876
.
8.
Cervone
,
A.
,
Bramanti
,
C.
, and
Torre
,
L.
, 2007, “
Setup of a High-Speed Optical System for the Characterization of Flow Instabilities Generated by Cavitation
,”
ASME Trans. J. Fluids Eng.
0098-2202,
129
, pp.
877
885
.
9.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
d'Agostino
,
L.
, 2005, “
Thermal Effects on Cavitation Instabilities in Helical Inducers
,”
J. Propul. Power
0748-4658,
21
(
5
), pp.
893
899
.
10.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
,
Torre
,
L.
, and
d'Agostino
,
L.
, 2006, “
Experimental Characterization of Cavitation Instabilities in a Two-Bladed Axial Inducer
,”
J. Propul. Power
0748-4658,
22
(
6
), pp.
1389
1395
.
11.
Zoladz
,
T.
, 2000, “
Observations on Rotating Cavitation and Cavitation Surge From the Development of the Fastrac Engine Turbopump
,”
Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Huntsville, AL, Jul. 17–19.
12.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
, 2007, “
Analysis of Thermodynamic Effects on Cavitation Instabilities
,”
ASME Trans. J. Fluids Eng.
0098-2202,
129
, pp.
1123
1130
.
13.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
, 2005, “
Steady Analysis of Thermodynamic Effect of Partial Cavitation Using Singularity Method
,”
Proceedings of the FEDSM2005, 2005 ASME Fluids Engineering Division Summer Meeting and Exhibition
, Houston, TX, Jun. 19–23.
14.
Hosangadi
,
A.
,
Ahuja
,
V.
, and
Ungewitter
,
R. J.
, (2006) “
Numerical Study of a Flat Plate Inducer: Comparison of Performance in Liquid Hydrogen and Water
,”
Proceedings of the Sixth International Symposium on Cavitation, CAV2006
, Wageningen, The Netherlands.
15.
Sinibaldi
,
E.
,
Beux
,
F.
, and
Salvetti
,
M. V.
, 2006, “
A Numerical Method for 3D Barotropic Flows in Turbomachinery
,”
Flow, Turbul. Combust.
1386-6184,
76
, pp.
371
381
.
16.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hakimi
,
N.
, and
Hirsch
,
C.
, 2005, “
Numerical Simulation of Cavitating Flow in 2D and 3D Inducer Geometries
,”
Int. J. Numer. Methods Fluids
0271-2091,
48
, pp.
135
167
.
17.
Franc
,
J. P.
,
Rebattet
,
C.
, and
Coulon
,
A.
, 2004, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
716
723
.
18.
Franc
,
J. P.
,
Boitel
,
G.
,
Riondet
,
M.
,
Janson
,
E.
, and
Ramina
,
P.
, 2010, “
Thermodynamic Effect on a Cavitating Inducer—Part II: On-Board Measurements of Temperature Depression Within Leading Edge Cavities
,”
ASME J. Fluids Eng.
0098-2202,
132
, p.
021304
.
19.
Franc
,
J. P.
, and
Pellone
,
C.
, 2007, “
Analysis of Thermal Effects in a Cavitating Inducer Using Rayleigh Equation
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
974
983
.
20.
Franc
,
J. P.
, and
Michel
,
J. M.
, 2004,
Fundamentals of Cavitation Series: Fluid Mechanics and Its Applications
,
Springer
,
New York
, Vol.
76
.
21.
Brennen
,
C. E.
, 1994,
Hydrodynamics of Pumps
,
Concept ETI, Inc.
,
Norwich, VT
and
Oxford University Press
,
New York
.
22.
Brennen
,
C. E.
, 1995,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
23.
Bonnin
,
J.
, 1972, “
Theoretical and Experimental Investigations of Incipient Cavitation in Different Liquids
,” ASME Paper No. 72-WA/FE-31.
24.
Bonnin
,
J.
, 1973, “
Thermodynamic Parameters Involved in Boiling and Cavitation
,”
Proceedings of the 1973 Cavitation and Polyphase Flow Forum, Joint Fluids Engineering/Applied Mechanics Meeting
, Atlanta, Jun. 20–22.
25.
Fruman
,
D. H.
,
Benmansour
,
I.
, and
Sery
,
R.
, 1991, “
Estimation of Thermal Effects on Cavitation of Cryogenic Liquids
,”
Cavitation and Multiphase Flow Forum
, ASME FED-Vol.
109
, pp.
93
96
.
26.
Fruman
,
D. H.
,
Reboud
,
J. L.
, and
Stutz
,
B.
, 1999, “
Estimation of Thermal Effects in Cavitation of Thermosensible Liquids
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3195
3204
.
27.
Moore
,
R. D.
, and
Ruggeri
,
R. S.
, 1968, “
Prediction of Thermodynamic Effects of Developed Cavitation
,”
NASA
Report No. TN D-4899, Washington, DC.
28.
Hord
,
J.
, 1974, “
Cavitation in Liquid Cryogens. IV. Combined Correlations for Venturi, Hydrofoil, Ogives and Pumps
,”
NASA
Report No. CR-2448, Washington, DC.
29.
Hosangadi
,
A.
,
Ahuja
,
V.
,
Ungewitter
,
J.
, and
Busby
,
J.
, 2007, “
Analysis of Thermal Effects in Cavitating Liquid Hydrogen Inducers
,”
J. Propul. Power
0748-4658,
23
(
6
), pp.
1225
1234
.
30.
Tsujimoto
,
Y.
, 2001, “
Simple Rules for Cavitation Instabilities in Turbomachinery
,”
Proceedings of the CAV 2001 Fourth International Symposium on Cavitation
, California Institute of Technology, Pasadena, CA, Jun. 20–23.
You do not currently have access to this content.