Aero-acoustic coupling inside a deep cavity is present in many industrial processes. This investigation focuses on the pressure amplitude response, within two deep cavities characterized by their length over depth ratios (L/H=0.2 and 0.41), as a function of freestream velocities of a 2×2m2 wind tunnel. Convection velocity of instabilities was measured along the shear layer, using velocity cross-correlations. Experiments have shown that in deep cavity for low Mach numbers, oscillations of discrete frequencies can be produced. These oscillations appear when the freestream velocity becomes higher than a minimum value. Oscillations start at L/θ0=10 and 21 for L/H=0.2 and 0.41, respectively. The highest sound pressure level inside a deep cavity is localized at the cavity floor. A quite different behavior of the convection velocity was observed between oscillating and nonoscillating shear-layer modes. The hydrodynamic mode of the cavity shear layer is well predicted by the Rossiter model (1964, “Wind Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds,” Aeronautical Research Council Reports and Memo No. 3438) when measured convection velocity is used and the empirical time delay is neglected. For L/H=0.2, only the first Rossiter mode is present. For L/H=0.41, both the first and the second modes are detected with the second mode being the strongest.

1.
Rossiter
,
J. E.
, 1964, “
Wind Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds
,” Aeronautical Research Council Reports and Memo No. 3438.
2.
Tam
,
C. K. W.
, and
Block
,
P. J. W.
, 1978, “
On the Tones and Pressure Oscillations Induced by Flow Over Rectangular Cavities
,”
J. Fluid Mech.
0022-1120,
89
(
2
), pp.
373
399
.
3.
Rockwell
,
D.
, and
Knisely
,
C.
, 1980, “
Vortex-Edge Interactions: Mechanism for Generating Low Frequency Components
,”
Phys. Fluids
,
23
(
2
), pp.
239
240
. 1070-6631
4.
Rockwell
,
D.
,
Lin
,
J. -C.
,
Oshkai
,
P.
,
Reiss
,
M.
, and
Pollack
,
M.
, 2003, “
Shallow Cavity Flow Tone Experiments: Onset of Locked-On States
,”
J. Fluids Struct.
,
17
, pp.
381
414
. 1070-6631
5.
Gharib
,
M.
, and
Roshko
,
A.
, 1987, “
The Effect of Flow Oscillations on Cavity Drag
,”
J. Fluid Mech.
0022-1120,
177
, pp.
501
530
.
6.
Forestier
,
N.
,
Jacquin
,
L.
, and
Geffroy
,
P.
, 2003, “
The Mixing Layer Over a Deep Cavity at High-Subsonic Speed
,”
J. Fluid Mech.
0022-1120,
475
, pp.
101
145
.
7.
Sarohia
,
V.
, 1975, “
Experimental and Analytical Investigation of Oscillations in Flows Over Cavities
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
8.
Knisely
,
C.
, and
Rockwell
,
D.
, 1982, “
Self-Sustained Low-Frequency Components in an Impinging Shear Layer
,”
J. Fluid Mech.
0022-1120,
116
, pp.
157
186
.
9.
Gloerfelt
,
X.
,
Bogey
,
C.
, and
Bailly
,
C.
, 2003, “
Numerical Evidence of Mode Switching in the Flow-Induced Oscillations by a Cavity
,”
Int. J. Aeroacoust.
1475-472X,
2
(
2
), pp.
193
217
.
10.
Grace
,
S. M.
,
Dewar
,
W. G.
, and
Wroblewski
,
D. E.
, 2004, “
Experimental Investigations of the Flow Characteristics Within a Shallow Wall Cavity for Both Laminar and Turbulent Upstream Boundary Layers
,”
Exp. Fluids
0723-4864,
36
, pp.
791
804
.
11.
Camussi
,
R.
,
Guj
,
G.
, and
Ragni
,
A.
, 2006, “
Wall Pressure Fluctuations Induced by Turbulent Boundary Layers Over Surface Discontinuities
,”
J. Sound Vib.
0022-460X,
294
(
1–2
), pp.
177
204
.
12.
East
,
L. F.
, 1966, “
Aerodynamically Induced Resonance in Rectangular Cavities
,”
J. Sound Vib.
0022-460X,
3
(
3
), pp.
277
287
.
13.
Larchevêque
,
L.
,
Sagaut
,
P.
,
Ivan
,
M.
, and
Labbé
,
O.
, 2003, “
Large-Eddy Simulation of a Compressible Flow Past a Deep Cavity
,”
Phys. Fluids
1070-6631,
15
(
1
), pp.
193
210
.
14.
El Hassan
,
M.
,
Keirsbulck
,
L.
, and
Labraga
,
L.
, “
Non-Oscillating/Oscillating Shear Layer Over a Large Deep Cavity at Low-Subsonic Speeds
,”
Flow, Turbul. Combust.
, to be published. 1386-6184
15.
Rowley
,
C. W.
,
Colonius
,
T.
, and
Basu
,
A. J.
, 2002, “
On Self-Sustaining Oscillations in Two-Dimensional Compressible Flow Over Rectangular Cavities
,”
J. Fluid Mech.
0022-1120,
455
, pp.
315
346
.
16.
Kegerise
,
M. A.
,
Spina
,
E. F.
,
Garg
,
S.
, and
Cattafesta
,
L. N.
, 2004, “
Mode-Switching and Nonlinear Effects in Compressible Flow Over a Cavity
,”
Phys. Fluids
1070-6631,
16
(
3
), pp.
678
687
.
17.
Hirahara
,
H.
,
Kawahashi
,
M.
,
Uddin Khan
,
M.
, and
Hourigan
,
K.
, 2007, “
Experimental Investigation of Fluid Dynamic Instability in a Transonic Cavity Flow
,”
Exp. Therm. Fluid Sci.
,
31
(
4
), pp.
333
347
. 0894-1777
18.
Gloerfelt
,
X.
,
Bailly
,
C.
, and
Juvé
,
D.
, 2003, “
Direct Computation of the Noise Radiated by a Subsonic Cavity Flow and Application of Integral Methods
,”
J. Sound Vib.
0022-460X,
266
(
1
), pp.
119
146
.
19.
Cattafesta
,
L. N.
, III
,
Garg
,
S.
,
Choudhari
,
M.
, and
Li
,
F.
, 1997, “
Active Control of Flow-Induced Cavity Resonance
,” AIAA Paper No. 97-1804.
20.
Ho
,
C. -M.
, and
Huang
,
L. -S.
, 1982, “
Subharmonics and Vortex Merging in Mixing Layers
,”
J. Fluid Mech.
0022-1120,
119
, pp.
443
473
.
21.
Ho
,
C. -M.
, and
Nosseir
,
N. S.
, 1981, “
Dynamics of an Impinging Jet. Part 1. The Feedback Phenomenon
,”
J. Fluid Mech.
0022-1120,
105
, pp.
119
142
.
22.
Chatellier
,
L.
, 2002, “
Modélisation et contrôle actif des instabilités aéroacoustiques en cavité sous écoulement affleurant
,” Ph.D. thesis, Université de Poitiers, France.
23.
Nørstrud
,
H.
, and
Øye
,
I.
, 2006, “
On Subsonic Flow Over Cavities With Aero Acoustic Applications
,”
Proceedings of CMFF’06, 13th International Conference on Fluid Flow Technologies
, Budapest, Hungary, Sept. 6–9.
24.
Bergmann
,
D.
,
Kaiser
,
U.
, and
Wagner
,
S.
, 2003, “
Reduction of Low-Frequency Pressure Fluctuations in Wind Tunnels
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
91
(
4
), pp.
543
550
.
25.
Koch
,
W.
, 2005, “
Acoustic Resonances in Rectangular Open Cavities
,”
AIAA J.
,
43
, pp.
2342
2349
. 0001-1452
26.
Duan
,
Y.
,
Koch
,
W.
,
Linton
,
C. M.
, and
McIver
,
M.
, 2007, “
Complex Resonances and Trapped Modes in Ducted Domains
,”
J. Fluid Mech.
0022-1120,
571
, pp.
119
147
.
27.
Tam
,
C. K. W.
, 1976, “
The Acoustic Mode of a Two-Dimensional Rectangular Cavity
,”
J. Sound Vib.
0022-460X,
49
, pp.
353
364
.
28.
Oshkai
,
P.
,
Rockwell
,
D.
, and
Pollack
,
M.
, 2005, “
Shallow Cavity Flow Tones: Transformation From Large-To Small-Scale Modes
,”
J. Sound Vib.
,
280
(
3–5
), pp.
777
813
. 0038-1810
29.
Schachenmann
,
A.
, and
Rockwell
,
D.
, 1980, “
Self-Sustained Oscillations of Turbulent Pipe Flow Terminated by an Axisymmetric Cavity
,”
J. Sound Vib.
0022-460X,
73
(
1
), pp.
61
72
.
30.
Ricot
,
D.
,
Maillard
,
V.
, and
Bailly
,
C.
, 2002, “
Numerical Simulation of Unsteady Cavity Flow Using Lattice Boltzmann Method
,”
8th AIAA/CEAS AeroAcoustics Conference
, pp.
2002
2532
, AIAA Paper No. 2002-2532.
31.
Williams
,
J. F.
, 1992, “
Modern Methods in Analytical Acoustics Lecture Notes
,”
J. Acoust. Soc. Am.
,
92
(
5
), pp.
313
354
. 0001-4966
You do not currently have access to this content.