A computational fluid dynamics model for cavitation simulation was investigated and compared with experimental results in the case of a three-blade industrial inducer. The model is based on a homogeneous approach of the multiphase flow coupled with a barotropic state law for the cool water vapor/liquid mixture. The numerical results showed a good prediction of the head drop for three flow rates. The hydrodynamic mechanism of the head drop was investigated through a global and local study of the flow fields. The evolution of power, efficiency, and the blade loading during the head drop were analyzed and correlated with the visualizations of the vapor/liquid structures. The local flow analysis was made mainly by studying the relative helicity and the axial velocity fields. A first analysis of numerical results showed the high influence of the cavitation on the backflow structure.

1.
Bakir
,
F.
,
Kouidri
,
S.
,
Noguera
,
R.
, and
Rey
,
R.
, 2003, “
Experimental Analysis of an Axial Inducer Influence of the Shape of the Blade Leading Edge on the Performances in Cavitating Regime
,”
ASME J. Fluids Eng.
0098-2202,
125
(
2
), pp.
293
301
.
2.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
, 2006, “
Comparison of Computational Results Obtained From a Homogeneous Cavitation Model With Experimental Investigations of Three Inducers
,”
ASME J. Fluids Eng.
0098-2202,
128
(
6
), pp.
1308
1322
.
3.
Pascarella
,
C.
,
Ciucci
,
A.
,
Salvatore
,
V.
, and
d’Agostino
,
L.
, 2000, “
A Numerical Tool for the Investigation of Cavitating Flows in Turbopump Inducers
,”
Proceedings of the 36th AIAA Joint Propulsion Conference and Exhibit
, Huntsville, AL, Jul. 20–23.
4.
Pouffary
,
B.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
, 2008, 2008, “
Numerical Simulation of 3D Cavitating Flows: Analysis of Cavitation Head Drop in Turbomachinery
,”
ASME J. Fluids Eng.
,
130
(
4
), to be published.
5.
Ait Bouziad
,
Y.
,
Farhat
,
M.
,
Guennoun
,
F.
,
Kueny
,
J. L.
, and
Avellan
,
F.
, 2003, “
Physical Modelling and Simulation of Leading Edge Cavitation, Application to an Industrial Inducer
,”
Proceedings of the Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–4.
6.
Ait Bouziad
,
Y.
,
Farhat
,
M.
,
Kueny
,
J. L.
,
Avellan
,
F.
, and
Miyagawa
,
K.
, 2004, “
Experimental and Numerical Cavitation Flow Anlysis of an Industrial Inducer
,”
Proceedings of the 22nd IARH Symposium on Hydraulic Machinery and Systems
, Stockholm, Sweden, Jun. 29–Jul. 2.
7.
Hosagandi
,
A.
, and
Ahuja
,
V.
, 2006, “
Numerical Study of a Flat Plate Inducer: Comparison of Performance in Liquid Hydrogen and Water
,”
Proceedings of the Symposium CAV 2006
, Wageningen, The Netherlands, Sep. 11–15.
8.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
, 1993, “
A Theoretical Analysis of Rotating Cavitation Inducers
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
135
141
.
9.
Hirschi
,
R.
,
Dupont
,
F.
, and
Avellan
,
F.
, 1998, “
Centrifugal Pump Performance Drop Due to Leading Edge Cavitation: Numerical Predictions Compared With Model Tests
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
705
711
.
10.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hofmann
,
M.
, and
Stoffel
,
B.
, 2003, “
Experimental and Numerical Studies in a Centrifugal Pump With 2D-Curved Blades in Cavitating Conditions
,”
ASME J. Fluids Eng.
0098-2202,
125
(
6
), pp.
970
978
.
11.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hakimi
,
N.
, and
Hirsch
,
C.
, 2005, “
Numerical Simulation of Cavitating Flow in 2D and 3D Inducer Geometries
,”
Int. J. Numer. Methods Fluids
0271-2091,
48
(
2
), pp.
135
167
.
12.
Medvitz
,
R. B.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Lindau
,
J. W.
,
Yocum
,
A. M.
, and
Pauley
,
L. L.
, 2001, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
Proceedings of the ASME Fluids Engineering Division Summer Meeting
, New Orleans, LA, May 29–Jun. 1.
13.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
, 2005, “
Comparison of Computational Results Obtained From a VOF Cavitation Model With Experimental Investigations of Three Inducers: Part I: Experimental Investigations
,”
Proceedings of the ASME Fluids Engineering Division Summer Meeting and Exhibition
, Houston, TX, Jun. 19–23.
14.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
, 2005, “
Comparison of Computational Results Obtained From a VOF Cavitation Model With Experimental Investigations of Three Inducers: Part II: Numerical Approach
,”
Proceedings of the ASME Fluids Engineering Division Summer Meeting and Exhibition
, Houston, TX, Jun. 19–23.
15.
Athavale
,
M. M.
,
Li
,
H. Y.
,
Jiang
,
Y.
, and
Singhal
,
A. K.
, 2002, “
Application of the Full Cavitation Model to Pumps and Inducers
,”
Int. J. Rotating Mach.
1023-621X,
8
(
1
), pp.
45
56
.
16.
Rebattet
,
C.
,
Wegner
,
M.
,
Morel
,
P.
, and
Bonhomme
,
C.
, 2001, “
Inducer Design That Avoids Rotating Cavitation
,”
Proceedings of the AFI Conference
, Sandai, Japan, Oct. 4–5.
17.
Delannoy
,
Y.
, and
Kueny
,
J. L.
, 1990, “
Two Phase Flow Approach in Unsteady Cavitation Modelling
,” Cavitation and Multiphase Flow Forum,
FED (Am. Soc. Mech. Eng.)
0888-8116,
98
, pp.
153
158
.
18.
Hakimi
,
N.
, 1998, “
Preconditioning Methods for Time Dependent Navier–Stokes Equations
,” Ph.D. thesis, Vrije University, Brussels.
19.
FineTM/Turbo, 2003, Numerical Mechanics Applications, Software Package, Version 4.0-1, Numeca International.
20.
Fortes-Patella
,
R.
,
Coutier-Delgosha
,
O.
,
Perrin
,
J.
, and
Reboud
,
J. L.
, 2007, “
Numerical Model to Predict Unsteady Cavitating Flow Behaviour in Inducer Blade Cascades
,”
ASME J. Fluids Eng.
0098-2202,
129
(
2
), pp.
128
135
.
21.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
, 1981, “
Numerical Solution of the Euler Equations by Finite-Volume Methods Using Runge–Kutta Time Stepping Schemes
,” AIAA Paper No. 81–1259.
22.
Yang
,
Z.
, and
Shih
,
T. H.
, 1993, “
A k-e Model for Turbulence and Transitional Boundary Layer
,”
Near-Wall Turbulent Flows
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds.,
Elsevier
,
New York
, pp.
165
175
.
23.
Coutier-Delgosha
O.
,
Fortes-Patella
R.
,
Reboud
J. L.
,
Hakimi
N.
, and
Hirsch
C.
, 2005, “
Stability of Preconditioned Navier–Stokes Equations Associated With a Cavitation Model
,”
Comput. Fluids
0045-7930,
34
(
3
), pp.
319
349
.
24.
Pouffary
B.
,
Fortes-Patella
R.
,
Reboud
J. L.
, and
Lambert
P. A.
, 2008, “
Numerical Analysis of Cavitation Instabilities in Inducer Blade Cascade
,”
ASME J. Fluids Eng.
,
130
(4), to be published.
25.
Rolland
,
J.
,
Boitel
,
G.
,
Barre
,
S.
,
Goncalves
,
E.
, and
Fortes Patella
,
R.
, 2006, “
Inducer Experiments and Modelling of Cavitating Flows in Venturi: Part I: Stable Cavitation
,”
Proceedings of the Symposium CAV2006
, Wageningen, The Netherlands, Sep. 11–15.
26.
Rolland
,
J.
, 2008, “
Modélisation Des Écoulements Cavitants Dans les Inducteurs de Turbopompes: Prise en Compte des Effets Thermodynamiques
,” Ph.D. thesis, Institut National Polytechnique de Grenoble, France.
27.
Horiguchi
,
H.
,
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Aoki
,
M.
, 2000, “
A Theoretical Analysis of Alternate Blade Cavitation in Inducers
,”
ASME J. Fluids Eng.
0098-2202,
122
(
2
), pp.
156
163
.
You do not currently have access to this content.