A nonlocal pressure equation is derived from mean-field free energy theory for calculating liquid-vapor systems. The proposed equation is validated analytically by showing that it reduces to van der Waals’ square-gradient approximation under the assumption of slow density variations. The proposed nonlocal pressure is implemented in the mean-field free energy lattice Boltzmann method (LBM). The LBM is applied to simulate equilibrium liquid-vapor interface properties and interface dynamics of capillary waves and oscillating droplets in vapor. Computed results are validated with Maxwell constructions of liquid-vapor coexistence densities, theoretical relationship of variation of surface tension with temperature, theoretical planar interface density profiles, Laplace’s law of capillarity, dispersion relationship between frequency and wave number of capillary waves, and the relationship between radius and the oscillating frequency of droplets in vapor. It is shown that the nonlocal pressure formulation gives excellent agreement with theory.

1.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Methods for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
(
1
), pp.
201
225
.
2.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
, 1997, “
3D Simulation of Fluid-Particle Interactions With the Number of Particles Reaching 100
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
145
(
3-4
), pp.
301
321
.
3.
Hu
,
H. H.
,
Patankar
,
N. A.
, and
Zhu
,
M. Y.
, 2001, “
Direct Numerical Simulations of Fluid-Solid Systems Using Arbitrary-Lagrangian-Eularian Techniques
,”
J. Comput. Phys.
0021-9991,
169
(
2
), pp.
427
462
.
4.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
(
2
), pp.
335
354
.
5.
Unverdi
,
S. O.
, and
Tryggvason
,
T.
, 1992, “
Computations of Multi-Fluid Flows
,”
Physica D
0167-2789,
60
(
1-4
), pp.
70
83
.
6.
Unverdi
,
S. O.
, and
Tryggvason
,
T.
, 1992, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
0021-9991,
100
(
1
), pp.
25
37
.
7.
Osher
,
S.
, and
Sethian
,
J. A.
, 1988, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
0021-9991,
79
(
1
), pp.
12
49
.
8.
Sethian
,
J. A.
, 1996,
Level Set Methods
,
Cambridge University Press
, Cambridge, England.
9.
Antanovskii
,
A.
, 1995, “
A Phase Field Model of Capillarity
,”
Phys. Fluids
1070-6631,
7
(
4
), pp.
747
753
.
10.
Jasnow
,
D.
, and
Vinals
,
J.
, 1996, “
Coarse-Grained Description of Thermo-Capillary Flow
,”
Phys. Fluids
1070-6631,
8
(
3
), pp.
660
669
.
11.
Anderson
,
D. M.
,
McFadden
,
G. B.
, and
Wheeler
,
A. A.
, 1998, “
Diffuse-Interface Methods in Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
139
165
.
12.
Jacqmin
,
D.
, 1999, “
Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling
,”
J. Comput. Phys.
0021-9991,
155
(
1
), pp.
96
127
.
13.
Jacqmin
,
D.
, 2000, “
Contact Line Dynamics of a Diffuse Fluid Interface
,”
J. Fluid Mech.
0022-1120,
402
, pp.
57
88
.
14.
Jamet
,
D.
,
Lebaigue
,
O.
,
Coutris
,
N.
, and
Delhaye
,
J. M.
, 2001, “
The Second Gradient Method for the Direct Numerical Simulation of Liquid-Vapor Flows with Phase Change
,”
J. Comput. Phys.
0021-9991,
169
(
2
), pp.
624
651
.
15.
Van Kampen
,
N. G.
, 1964, “
Condensation of a Classical Gas With Long-Range Attraction
,”
Phys. Rev.
0031-899X,
135
(
2A
), pp.
A362
A369
.
16.
Sullivan
,
D. E.
, 1981, “
Surface Tension and Contact Angle of a Liquid-Solid Interface
,”
J. Chem. Phys.
0021-9606,
74
(
4
), pp.
2604
2615
.
17.
Rowlinson
,
J. S.
, and
Widow
,
B.
, 1982, “
Molecular Theory of Capillarity
,”
Clarendon Press
, Oxford.
18.
Rowlinson
,
J. S.
, 1979, “
Translation of J. D. van der Waals’ ‘The Thermodynamic Theory of Capillarity Under the Hypothesis of a Continuous Variation of Density
,”
J. Stat. Phys.
0022-4715,
20
(
2
), pp.
197
244
.
19.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
, 1958, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys.
0021-9606,
28
(
2
), pp.
258
267
.
20.
Swift
,
M. R.
,
Osborn
,
W. R.
, and
Yeomans
,
J. M.
, 1995, “
Lattice Boltzmann Simulation of Nonideal Fluids
,”
Phys. Rev. Lett.
0031-9007,
75
(
5
), pp.
830
833
.
21.
He
,
X.
, and
Doolen
,
G. D.
, 2002, “
Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows
,”
J. Stat. Phys.
0022-4715,
107
(
1-2
), pp.
309
328
.
22.
Gunstensen
,
A. K.
,
Rothman
,
D. H.
, and
Zaleski
,
S.
, 1991, “
Lattice Boltzmann Model of Immiscible Fluids
,”
Phys. Rev. A
1050-2947,
43
(
8
), pp.
4320
4327
.
23.
Shan
,
X.
, and
Chen
,
H.
, 1993, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
1063-651X,
47
(
3
), pp.
1815
1819
.
24.
Shan
,
X.
, and
Chen
,
H.
, 1994, “
Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation
,”
Phys. Rev. E
1063-651X,
49
(
4
), pp.
2941
2948
.
25.
Swift
,
M. R.
,
Orlandini
,
E.
,
Osborn
,
W. R.
, and
Yeomans
,
J. M.
, 1996, “
Lattice Boltzmann Simulations of Liquid-Gas and Binary-Fluid Systems
,”
Phys. Rev. E
1063-651X,
54
(
5
), pp.
5041
5052
.
26.
He
,
X.
,
Shan
,
X.
, and
Doolen
,
G. D.
, 1998, “
Discrete Boltzmann Equation Model for Nonideal Gases
,”
Phys. Rev. E
1063-651X,
57
(
1
), pp.
R13
R16
.
27.
Luo
,
L.
, 1998, “
Unified Theory of Lattice Boltzmann Models for Nonideal Gases
,”
Phys. Rev. Lett.
0031-9007
81
(
8
), pp.
1618
1621
.
28.
Zhang
,
J.
,
Li
,
B.
, and
Kwok
,
D. Y.
, 2004, “
Mean-Field Free-Energy Approach to the Lattice Boltzmann Method for Liquid-Vapor and Solid-Fluid Interfaces
,”
Phys. Rev. E
1063-651X,
69
(
3
),
032602
.
29.
Van Giessen
,
A. E.
,
Bukman
,
D. J.
, and
Widom
,
B.
, 1997, “
Contact Angles of Liquid Drops on Low-Energy Solid Surfaces
,”
J. Colloid Interface Sci.
0021-9797,
192
(
1
), pp.
257
265
.
30.
Briant
,
A. J.
,
Papatzacos
,
P.
, and
Yeomans
,
J. M.
, 2002, “
Lattice Boltzmann Simulations of Contact Line Motion in a Liquid-Gas System
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
360
(
1792
), pp.
485
495
.
31.
Briant
,
A. J.
,
Wagner
,
A. J.
, and
Yeomans
,
J. M.
, 2004, “
Lattice Boltzmann Simulations of Contact Line Motion. I. Liquid-Gas Systems
,”
Phys. Rev. E
1063-651X,
69
(
3
),
031602
.
32.
Li
,
S.-M.
, and
Tafti
,
D. K.
, 2006, “
Contact Line Dynamics in Liquid-Vapor Flows Using Lattice Boltzmann Method
,”
Proc. of FEDSM2006, 2006 ASME Joint U.S.–European Fluids Engineering Summer Meeting
, July 17–20, Miami,
ASME
, New York, ASME Paper No. FEDSM2006-98022.
33.
Chen
,
S.
,
Chen
,
H. D.
,
Martinez
,
D.
, and
Mathhaeus
,
W. H.
, 1991, “
Lattice Boltzmann Model for Simulation of Magnetohydrodynamics
,”
Phys. Rev. Lett.
0031-9007,
67
(
27
), pp.
3776
3779
.
34.
Qian
,
Y. H.
,
D’Humieres
,
D.
, and
Lallemand
,
P.
, 1992, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
0295-5075,
17
(
6
), pp.
479
484
.
35.
Chen
,
H.
,
Chen
,
S.
, and
Mathhaeus
,
W. H.
, 1992, “
Recovery of the Navier-Stokes Equations Using a Lattice-Gas Boltzmann Method
,”
Phys. Rev. A
1050-2947,
45
(
8
), pp.
R5339
R5342
.
36.
Stanley
,
H. E.
, 1971,
Introduction to Phase Transitions and Critical Phenomena
,
Oxford University Press
, London, Chap. 5.
37.
Van Giessen
,
A. E.
,
Blokhuis
,
E. M.
, and
Bukman
,
D. J.
, 1998, “
Mean Field Curvature Correlation to the Surface Tension
,”
J. Chem. Phys.
0021-9606,
108
(
3
), pp.
1148
1156
.
38.
Kalarakis
,
A. N.
,
Burganos
,
V. N.
, and
Payatakes
,
A. C.
, 2002, “
Galilean Invariant Lattice-Boltzmann Simulation of Liquid-Vapor Interface Dynamics
,”
Phys. Rev. E
1063-651X,
65
(
5
),
056702
.
39.
Lamb
,
H.
, 1945,
Hydrodynamics
, 6th ed.,
Dover
, New York, Chap. 9.
40.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1987,
Fluid Mechanics
,
Pergamon Press
, New York, 2nd ed., Chap. 7.
41.
Voorhees
,
P. W.
, 1985, “
The Theory of Ostwald Ripening
,”
J. Stat. Phys.
0022-4715,
38
(
1-2
), pp.
231
252
.
42.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
, 1954, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component System
,”
Phys. Rev.
0031-899X A,
94
, pp.
511
525
.
You do not currently have access to this content.