An Eulerian two-fluid computational fluid dynamics model has been developed for flows with microbubble drag reduction (MBDR). This paper focuses on recent validation studies for MBDR flows across a spectrum of Reynolds numbers. Direct numerical simulations and two sets of experimental flat plate boundary layer measurements are studied. In this paper, the interfacial dynamics and other models used are first presented, followed by detailed comparisons with the validation cases. Emphasis is placed on the modeling strategies required to capture measured volume fraction, bubble size, and bubble velocity distributions, as well as skin friction drag reduction.
Issue Section:
Technical Papers
1.
McCormick
, M. E.
, and Bhattacharyya
, R.
, 1973, “Drag Reduction on a Submersible Hull by Electrolysis
,” Nav. Eng. J.
0028-1425, 85
, pp. 11
–16
.2.
Bogdevich
, V. G.
, and Evseev
, A. R.
, 1976, “Effect of Gas Saturation on Wall Turbulence
,” Investigation of Boundary Layer Control
, S. S.
Kutateladze
and G. S.
Migirenko
, eds., Thermophysics Institute Publishing
, Novosibirsk, Siberia
(in Russian).3.
Legner
, H. H.
, 1984, “A Simple Model for Gas Bubble Drag Reduction
,” Phys. Fluids
0031-9171, 27
(12
), pp. 2788
–2790
.4.
Marie
, J. L.
, 1987, “A Simple Analytical Formulation for Microbubble Drag Reduction
,” PCH, PhysicoChem. Hydrodyn.
0191-9059, 8
(2
), pp. 213
–220
.5.
Merkle
, C. L.
, and Deutsch
, S.
, 1992, “Microbubble Drag Reduction in Liquid Turbulent Boundary Layers
,” Appl. Mech. Rev.
0003-6900, 45
(3
), Part 1, pp. 103
–127
.6.
Kato
, H.
, Miura
, K.
, Yamaguchi
, H.
, and Miyanaga
, M.
, 1998, “Experimental Study on Microbubble Ejection Method for Frictional Drag Reduction
,” J. Mar. Sci. Technol.
0948-4280, 3:3
, pp. 122
–129
.7.
Meng
, J. C. S.
, and Uhlman
, J. S.
, 1998, “Microbubble Formation and Splitting in a Turbulent Boundary Layer for Turbulence Reduction
,” Proceedings of the International Symposium on Seawater Drag Reduction
, Newport, RI
, July, US Office of Naval Research, Arlington, VA, pp. 341
–355
.8.
Ferrante
, A.
, and Elghobashi
, S.
, 2004, “On the Physical Mechanisms of Drag Reduction in a Spatially Developing Turbulent Boundary Layer Laden with Microbubbles
,” J. Fluid Mech.
0022-1120, 503
, pp. 345
–355
.9.
Ferrante
, A.
, and Elghobashi
, S.
, 2005, “Reynolds Number Effects on Drag Reduction in a Bubble-Laden Spatially Developing Turbulent Boundary Layer Over a Flat Plate
,” Proceedings of the 2nd International Symposium on Seawater Drag Reduction
, Busan, Korea
, May.10.
Tryggvason
, G.
, and Lu
, J.
, 2005, “DNS of Drag Reduction Due to Bubble Injection Into Turbulent Flow
,” Proceedings of the 2nd International Symposium on Seawater Drag Reduction
, Busan, Korea
, May, US Office of Naval Research, Arlington, VA.11.
Kunz
, R. F.
, Deutsch
, S.
, and Lindau
, J. W.
, 2003, “Two Fluid Modeling Of Microbubble Turbulent Drag Reduction
,” ASME Paper No. FED2003-45640, Proceedings of FEDSM’03: 4TH ASME-JSME Joint Fluids Engineering Conference
, Honolulu, Hawaii
, July 6–11, ASME, New York.12.
Dong
, S.
, Xu
, J.
, Maxey
, M. R.
, and Karniadakis
, G. E.
, 2005, “Microbubble Dynamics in Turbulent Channel Flow
,” Proceedings of the 2nd International Symposium on Seawater Drag Reduction
, Busan, Korea
, May, US Office of Naval Research, Arlington, VA.13.
Sanders
, W. C.
, Dowling
, D. R.
, Perlin
, M.
, and Ceccio
, S. L.
, 2006, “Bubble Friction Drag Reduction in a High Reynolds Number Flat Plate Turbulent Boundary Layer
,” J. Fluid Mech.
0022-1120, 552
, pp. 353
–380
.14.
Fontaine
, A. A.
, Petrie
, H. L.
, DeVilbiss
, D. W.
, Money
, M. J.
, and Deutsch
, S.
, 2005, “Void Fraction and Velocity Probe for Micro-bubble Flow Studies
,” Proceedings of the 2nd International Symposium on Seawater Drag Reduction
, Busan, Korea
, May, US Office of Naval Research, Arlington, VA.15.
Hibiki
, T.
, Takamasa
, T.
, and Ishii
, M.
, 2001, “Interfacial Area Transport of Bubbly Flow in a Small Diameter Pipe
,” J. Nucl. Sci. Technol.
0022-3131, 38
(8
), 614
–620
.16.
Loth
, E.
, 2000, “Numerical Approaches for Motion of Dispersed Particles, Droplets and Bubbles
,” Prog. Energy Combust. Sci.
0360-1285, 26
, 161
–223
.17.
Richardson
, J. F.
, and Zaki
, W. N.
, 1954, “Sedimentation and Fluidization: Part I
,” Trans. Inst. Chem. Eng.
0371-7496, 32
, pp. 35
–53
.18.
Johansen
, S. T.
, and Boysan
, F.
, 1988, “Fluid Dynamics in Bubble Stirred Ladles: Part II. Mathematical Modeling
,” Metall. Trans. B
0360-2141, 19b
, pp. 755
–764
.19.
Lahey
, R. T.
, and Drew
, D. A.
, 2000, “An Analysis of Two-Phase Flow and Heat Transfer Using a Multidimensional, Multi-field, Two-Fluid Computational Fluid Dynamics (CFD) Model
,” Japan/US Seminar on Two-Phase Flow Dynamics
, Santa Barbara, California
.20.
Kawamura
, T.
, and Yoshiba
, H.
, 2004, “Numerical Modelng of Bubble Distributions in Horizontal Bubbly Channel Flow
,” Proceedings of the 5th International Conference on Multiphase Flow
, Yokohama, Japan
, Paper No. 354.21.
Lopez de Bertodano
, M.
, 1998, “Two-fluid Model for Two-phase Turbulent Jets
,” Nucl. Eng. Des.
0029-5493, 179
, pp. 65
–74
.22.
Moraga
, F. J.
, Larreteguy
, A. E.
, Drew
, D. A.
, and Lahey
, R. T.
, Jr., 2003, “Assessment of Turbulent Dispersion Models for Bubbly Flows in the Low Stokes Number Limit
,” Int. J. Multiphase Flow
0301-9322, 29
, pp. 655
–673
.23.
Carrica
, P. M.
, Drew
, D.
, Bonetto
, F.
, and Lahey
, R. T.
, Jr., 1999, “A Polydisperse Model for Bubbly Two-phase Flow around a Surface Ship
,” Int. J. Multiphase Flow
0301-9322, 25
, pp. 257
–305
.24.
Prince
, M. J.
, and Blanch
, H. W.
, 1990, “Bubble Coalescence and Breakup in Air-Sparged Bubble Columns
,” AIChE J.
0001-1541, 36
(10
), pp. 1485
–1499
.25.
Batchelor
, G. K.
, 1988, “A New Theory of the Instability of a Uniform Fluidized Bed
,” J. Fluid Mech.
0022-1120, 193
, pp. 75
–110
.26.
Martinez-Bazan
, C.
, Montanes
, J. L.
, and Lasheras
, J. C.
, 1999, “On the Breakup of an Air Bubble Injected into a Fully Developed Turbulent Flow. Part 1. Breakup Frequency
,” J. Fluid Mech.
0022-1120, 401
, pp. 157
–182
.27.
Levich
, V. G.
, 1962, Physicochemical Hydrodynamics
, Prentice-Hall
, Englewood Cliffs, N.J.
.28.
Chesters
, A. K.
, and Hofman
, G.
, 1982, “Bubble Coalescence in Pure Liquids
,” Appl. Sci. Res.
0003-6994, 38
, pp. 353
–361
.29.
Lehr
, F.
, and Mewes
, D.
, 2001, “A Transport Equation for the Interfacial Area Density Applied to Bubble Columns
,” Chem. Eng. Sci.
0009-2509, 56
, pp. 1159
–1166
.30.
Durbin
, P. A.
, 1991, “Near-Wall Turbulence Closure Modeling Without Damping Functions
,” Theor. Comput. Fluid Dyn.
0935-4964, 3
, pp. 1
–13
.31.
Van Doormal
, J. P.
, and Raithby
, G. D.
, 1984, “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,” Numer. Heat Transfer
0149-5720, 7
, pp. 147
–163
.32.
Kunz
, R. F.
, and Venkateswaran
, S.
, 2000, “On the Roles of Implicitness, Realizability, Boundary Conditions and Artificial Dissipation in Multidimensional Two-Fluid Simulations with Interfacial Forces
,” AMIF-ESF Workshop on Computing Methods for Two-Phase Flow
, Centre Paul Langevin
, Aussois, France
, January 12–14.33.
Kunz
, R. F.
, Yu
, W. S.
, Antal
, S. P.
, and Ettorre
, S. M.
, 2001, “An Unstructured Two-fluid Method Based on the Coupled Phasic Exchange Algorithm
,” AIAA Paper No. 2001–2672.34.
Lomholt
, S.
, and Maxey
, M. R.
, 2003, “Force-coupling Method for Particulate Two-phase Flow: Stokes Flow
,” J. Comput. Phys.
0021-9991, 184
, pp. 381
–405
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.