Strongly swirling vortex chamber flows are examined experimentally and numerically using the Reynolds stress model (RSM). The predictions are compared against the experimental data in terms of the pressure drop across the chamber, the axial and tangential velocity components, and the radial pressure profiles. The overall agreement between the measurements and the predictions is reasonable. The predictions provided by the numerical model show clearly the forced and free vortex modes of the tangential velocity profile. The reverse flow (or back flow) inside the core and near the outlet, known from experiments, is captured by the numerical simulations. The swirl number has been found to have a measurable impact on the flow features. The vortex core size is shown to contract with the swirl number which leads to higher pressure drop, higher peak tangential velocity, and deeper radial pressure profiles near the axis of rotation. The adequate agreement between the experimental data and the simulations using RSM turbulence model provides a valid tool to study further these industrially important swirling flows.

1.
Escudier
,
M. P.
,
Bornstein
,
J.
, and
Zehender
,
N.
, 1980, “
Observations and LDA Measurements of Confined Turbulent Vortex Flow
,”
J. Fluid Mech.
0022-1120,
98
, pp.
49
63
.
2.
Vatistas
,
G. H.
, 1998, “
New Model for Intense Self-Similar Vortices
,”
J. Propul. Power
0748-4658,
14
(
4
), pp.
462
469
.
3.
Sullivan
,
R. D.
, 1959, “
A Two-Cell Vortex Solution of the Navier-Stokes Equations
,”
J. Aerosp. Sci.
0095-9820,
26
(
11
), pp.
767
768
.
4.
Nallasamy
,
M.
, 1987, “
Turbulence Models and Their Applications to the Prediction of Internal Flows
,”
Comput. Fluids
0045-7930,
15
(
2
), pp.
151
194
.
5.
Nejad
,
A. S.
,
Vanka
,
S. P.
,
Favaloro
,
S. C.
,
Samimy
,
M.
, and
Langenfeld
,
C.
, 1989, “
Application of Laser Velocimetry for Characterization of Confined Swirling Flow
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
111
, pp.
36
45
.
6.
Weber
,
R.
, 1990, “
Assessment of Turbulence Modeling for Engineering Prediction of Swirling Vortices in the Near Burner Zone
,”
Int. J. Heat Fluid Flow
0142-727X,
11
(
3
), pp.
225
235
.
7.
Launder
,
B. E.
, 1989, “
Second-Moment Closure and Its Use in Modelling Turbulent Industrial Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
9
(
8
), pp.
963
985
.
8.
Leschziner
,
M. A.
, 1990, “
Modelling Engineering Flows With Reynolds Stress Turbulence Closure
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
35
(
1
), pp.
21
47
.
9.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1999,
Computational Methods for Fluid Dynamics
, 2nd ed.,
Springer-Verlag
, Berlin.
10.
Jones
,
L. N.
,
Gaskell
,
P. H.
,
Thompson
,
H. M.
,
Gu
,
X. J.
, and
Emerson
,
D. R.
, 2005, “
Anisotropic, Isothermal, Turbulent Swirling Flow in a Complex Combustor Geometry
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
, pp.
1053
1059
.
11.
German
,
A. E.
, and
Mahmud
,
T.
, 2005, “
Modelling of Non-Premixed Swirl Burner Flows Using a Reynolds-Stress Turbulence Closure
,”
Fuel
0016-2361,
84
(
5
), pp.
583
594
.
12.
Jakirlic
,
S.
,
Hanjalic
,
K.
, and
Tropea
,
C.
, 2002, “
Modeling Rotating and Swirling Turbulent Flows: A Perpetual Challenge
,”
AIAA J.
0001-1452,
40
(
10
), pp.
1984
1996
.
13.
Orland
,
P.
, and
Fatica
,
M.
, 1997, “
Direct Simulation of Turbulent Flow in a Pipe Rotating About Its Axis
,”
J. Fluid Mech.
0022-1120,
343
, pp.
43
72
.
14.
Jones
,
W. P.
, and
Pascau
,
A.
, 1989, “
Calculation of Confined Swirling Flows With a Second Momentum Closure
,”
ASME Trans. J. Fluids Eng.
0098-2202,
111
, pp.
248
255
.
15.
Hoekstra
,
A. J.
,
Derksen
,
H. E. A.
, and
Akker
,
V. D.
, 1999, “
An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones
,”
Chem. Eng. Sci.
0009-2509,
54
, pp.
2055
2065
.
16.
Vatistas
,
G. H.
,
Lam
,
C.
, and
Lin
,
S.
, 1989, “
Similarity Relationship for the Core Radius and the Pressure Drop in Vortex Chambers
,”
Can. J. Chem. Eng.
0008-4034,
67
, pp.
540
544
.
17.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
, 1975, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
0022-1120,
68
(
3
), pp.
537
566
.
18.
Lien
,
F. S.
, and
Leschziner
,
M. A.
, 1994, “
Assessment of Turbulent Transport Models Including Nonlinear RNG Eddy-Viscosity Formulation and Second-Moment Closure
,”
Comput. Fluids
0045-7930,
23
(
8
), pp.
983
1004
.
19.
Gibson
,
M.
, and
Launder
,
B. E.
, 1978, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
0022-1120,
86
, pp.
491
511
.
20.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
(
2
), pp.
269
289
.
21.
Kim
,
S. E.
, and
Choudhury
,
D.
, 1995, “
A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient
,” ASME FED, 217, Separated and Complex Flows, pp.
273
280
.
22.
Gupta
,
A. K.
,
Lilly
,
D. G.
, and
Syred
,
N.
, 1984,
Swirl Flows
,
Abacus, Tunbridge Wells
, England, UK.
23.
Jawarneh
,
M. A.
,
Vatistas
,
G. H.
, and
Hong
,
H.
, 2005, “
On the Flow Development in Jet-Driven Vortex Chambers
,”
J. Propul. Power
0748-4658,
21
(
3
), pp.
564
570
.
24.
Yan
,
L.
,
Vatistas
,
G. H.
, and
Lin
,
S.
, 2000, “
Experimental Studies on Turbulence Kinetic Energy in Confined Vortex Flows
,”
J. Therm. Sci.
1003-2169,
9
(
1
), pp.
10
22
.
25.
Lam
,
H. C.
, 1993, “
An Experimental Investigation and Dimensional Analysis of Confined Vortex Flows
,” Ph.D. thesis, Department of Mechanical and industrial Engineering, Concordia University, Montreal.
26.
Alekseenko
,
S. V.
,
Kuibin
,
P. A.
,
Okulov
,
V. L.
, and
Shtork
,
S. I.
, 1999, “
Helical Vortices in Swirl Flow
,”
J. Fluid Mech.
0022-1120,
383
, pp.
195
243
.
You do not currently have access to this content.