Exact solutions for the Couette profile in two nonclassical Taylor-Couette cells are reported. The profiles take the form of eigenfunction expansions, whose convergence rates can be significantly accelerated using a representative convergence acceleration algorithm. Results are thus suitable as initial conditions for high resolution numerical simulations of transition phenomena in these configurations. [S0098-2202(00)02602-X]
1.
Taylor
, G. I.
, 1923
, “Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,” Philos. Trans. R. Soc. London, Ser. A
, 223
, pp. 289
–343
.2.
Panton, R. L., 1984, Incompressible Flow, Wiley, New York.
3.
Criminale
, W. O.
, Jackson
, T. L.
, Lasseigne
, D. G.
, and Joslin
, R. D.
, 1997
, “Perturbation Dynamics in Viscous Channel Flows
,” J. Fluid Mech.
, 339
, pp. 55
–77
.4.
Hua
, B. L.
, Gentil
, S. L.
, and Orlandi
, P.
, 1997
, “First Transitions in Circular Couette Flow with Axial Stratification
,” Phys. Fluids
, 9
, pp. 365
–375
.5.
Kedia
, R.
, Hunt
, M. L.
, and Colonius
, T.
, 1998
, “Numerical Simulations of Heat Transfer in Taylor-Couette Flow
,” ASME J. Heat Transfer
, 120
, pp. 65
–71
.6.
Wiener
, R. J.
, Snyder
, G. L.
, Prange
, M. P.
, Frediani
, D.
, and Diaz
, P. R.
, 1997
, “Period-Doubling Cascade to Chaotic Phase Dynamics in Taylor Vortex Flow with Hourglass Geometry
,” Phys. Rev. E
, 55
, pp. 5489
–5497
.7.
Wimmer
, M.
, 1985
, “Einfluß der Geometrie auf Taylor-Wirbel
,” Z. Angew. Math. Mech.
, 65
, pp. T255–T256
T255–T256
.8.
Wimmer
, M.
, 1988
, “Viscous Flows and Instabilities Near Rotating Bodies
,” Prog. Aerosp. Sci.
, 25
, pp. 43
–103
.9.
Wimmer
, M.
, 1995
, “An Experimental Investigation of Taylor Vortex Flow Between Conical Cylinders
,” J. Fluid Mech.
, 292
, pp. 205
–227
.10.
Abboud
, M.
, 1988
, “Ein Beitrag zur theoretischen Untersuchung von Taylor-Wirbeln im Spalt zwischen Zylinder/Kegel-Konfigurationen
,” Z. Angew. Math. Mech.
, 68
, pp. T275–T277
T275–T277
.11.
Eagles
, P. M.
, and Eames
, K.
, 1983
, “Taylor Vortices Between Almost Cylindrical Boundaries
,” J. Eng. Math.
, 17
, pp. 263
–280
.12.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Clarendon Press, Oxford.
13.
Berker, R., 1963, “Inte´gration des e´quations du mouvement d’un fluide visqueux incompressible,” Handbuch der Physik, (Flu¨gge, S.), VIII/2, Berlin, Springer-Verlag.
14.
Wang
, C. Y.
, 1991
, “Exact Solutions of the Steady-State Navier-Stokes Equations
,” Annu. Rev. Fluid Mech.
, 23
, pp. 159
–177
.15.
O¨lc¸er
, N. Y.
, 1964
, “On the Theory of Conductive Heat Transfer in Finite Regions
,” Int. J. Heat Mass Transf.
, 7
, pp. 307
–314
.16.
Brezinski
, C.
, 1982
, “Some New Convergence Acceleration Methods
,” Math. Comput.
, 39
, pp. 133
–145
.17.
Singh
, S.
, and Singh
, R.
, 1993
, “Use of Linear and Nonlinear Algorithms in the Acceleration of Doubly Infinite Green’s Function Series
,” IEE-Proc. H
, 140
, pp. 452
–454
.18.
O¨zis¸ik, M. N., 1980, Heat Conduction, Wiley, New York.
Copyright © 2000
by ASME
You do not currently have access to this content.