Exact solutions for the Couette profile in two nonclassical Taylor-Couette cells are reported. The profiles take the form of eigenfunction expansions, whose convergence rates can be significantly accelerated using a representative convergence acceleration algorithm. Results are thus suitable as initial conditions for high resolution numerical simulations of transition phenomena in these configurations. [S0098-2202(00)02602-X]

1.
Taylor
,
G. I.
,
1923
, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,”
Philos. Trans. R. Soc. London, Ser. A
,
223
, pp.
289
343
.
2.
Panton, R. L., 1984, Incompressible Flow, Wiley, New York.
3.
Criminale
,
W. O.
,
Jackson
,
T. L.
,
Lasseigne
,
D. G.
, and
Joslin
,
R. D.
,
1997
, “
Perturbation Dynamics in Viscous Channel Flows
,”
J. Fluid Mech.
,
339
, pp.
55
77
.
4.
Hua
,
B. L.
,
Gentil
,
S. L.
, and
Orlandi
,
P.
,
1997
, “
First Transitions in Circular Couette Flow with Axial Stratification
,”
Phys. Fluids
,
9
, pp.
365
375
.
5.
Kedia
,
R.
,
Hunt
,
M. L.
, and
Colonius
,
T.
,
1998
, “
Numerical Simulations of Heat Transfer in Taylor-Couette Flow
,”
ASME J. Heat Transfer
,
120
, pp.
65
71
.
6.
Wiener
,
R. J.
,
Snyder
,
G. L.
,
Prange
,
M. P.
,
Frediani
,
D.
, and
Diaz
,
P. R.
,
1997
, “
Period-Doubling Cascade to Chaotic Phase Dynamics in Taylor Vortex Flow with Hourglass Geometry
,”
Phys. Rev. E
,
55
, pp.
5489
5497
.
7.
Wimmer
,
M.
,
1985
, “
Einfluß der Geometrie auf Taylor-Wirbel
,”
Z. Angew. Math. Mech.
,
65
, pp.
T255–T256
T255–T256
.
8.
Wimmer
,
M.
,
1988
, “
Viscous Flows and Instabilities Near Rotating Bodies
,”
Prog. Aerosp. Sci.
,
25
, pp.
43
103
.
9.
Wimmer
,
M.
,
1995
, “
An Experimental Investigation of Taylor Vortex Flow Between Conical Cylinders
,”
J. Fluid Mech.
,
292
, pp.
205
227
.
10.
Abboud
,
M.
,
1988
, “
Ein Beitrag zur theoretischen Untersuchung von Taylor-Wirbeln im Spalt zwischen Zylinder/Kegel-Konfigurationen
,”
Z. Angew. Math. Mech.
,
68
, pp.
T275–T277
T275–T277
.
11.
Eagles
,
P. M.
, and
Eames
,
K.
,
1983
, “
Taylor Vortices Between Almost Cylindrical Boundaries
,”
J. Eng. Math.
,
17
, pp.
263
280
.
12.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Clarendon Press, Oxford.
13.
Berker, R., 1963, “Inte´gration des e´quations du mouvement d’un fluide visqueux incompressible,” Handbuch der Physik, (Flu¨gge, S.), VIII/2, Berlin, Springer-Verlag.
14.
Wang
,
C. Y.
,
1991
, “
Exact Solutions of the Steady-State Navier-Stokes Equations
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
159
177
.
15.
O¨lc¸er
,
N. Y.
,
1964
, “
On the Theory of Conductive Heat Transfer in Finite Regions
,”
Int. J. Heat Mass Transf.
,
7
, pp.
307
314
.
16.
Brezinski
,
C.
,
1982
, “
Some New Convergence Acceleration Methods
,”
Math. Comput.
,
39
, pp.
133
145
.
17.
Singh
,
S.
, and
Singh
,
R.
,
1993
, “
Use of Linear and Nonlinear Algorithms in the Acceleration of Doubly Infinite Green’s Function Series
,”
IEE-Proc. H
,
140
, pp.
452
454
.
18.
O¨zis¸ik, M. N., 1980, Heat Conduction, Wiley, New York.
You do not currently have access to this content.